本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。
原文链接:OpenCV常用图像拼接方法(三):基于特征匹配拼接
OpenCV常用图像拼接方法将分为四个部分与大家共享,这里是第三种方法,欢迎关注后续。
OpenCV的常用图像拼接方法(三):基于特征匹配的图像拼接,本次介绍SIFT特征匹配拼接方法,OpenCV版本为4.4.0。特点和适用范围:图像有足够重合相同特征区域,且待拼接图像之间无明显尺度变换和畸变。
优点:适应部分倾斜变化情况。缺点:需要有足够的相同特征区域进行匹配,速度较慢,拼接较大图片容易崩溃。
如下是待拼接的两张图片:
特征匹配图
拼接结果图:
拼接缝处理后(拼接处过渡更自然):
核心代码: