OpenCV与AI深度学习 | OpenCV常用图像拼接方法(三):基于特征匹配拼接

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:OpenCV常用图像拼接方法(三):基于特征匹配拼接

    OpenCV常用图像拼接方法将分为四个部分与大家共享,这里是第三种方法,欢迎关注后续。

    OpenCV的常用图像拼接方法(三):基于特征匹配的图像拼接,本次介绍SIFT特征匹配拼接方法,OpenCV版本为4.4.0。特点和适用范围:图像有足够重合相同特征区域,且待拼接图像之间无明显尺度变换和畸变。

优点:适应部分倾斜变化情况。缺点:需要有足够的相同特征区域进行匹配,速度较慢,拼接较大图片容易崩溃。

    如下是待拼接的两张图片:

    特征匹配图

    拼接结果图:

    拼接缝处理后(拼接处过渡更自然):

    核心代码:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值