极市平台 | 超越YOLO11和D-FINE!DEIM:最强实时目标检测算法

本文来源公众号“极市平台”,仅用于学术分享,侵权删,干货满满。

原文链接:超越YOLO11和D-FINE!DEIM:最强实时目标检测算法

极市导读

本文介绍了一种改进的DETR目标检测框架DEIM,通过增加正样本数量和优化匹配质量的损失函数,显著加快了DETR模型的收敛速度,并在多个数据集上提升了性能,成为当前最优的实时目标检测方案。DEIM通过Dense O2O和MAL两项技术改进,解决了DETR在监督信号和匹配质量上的不足,使其在实时目标检测领域的表现超越了YOLO系列模型。

DEIM: DETR with Improved Matching for Fast Convergence

arXiv: https://arxiv.org/abs/2412.04234

Project webpage:https://www.shihuahuang.cn/DEIM/
GitHub:https://github.com/ShihuaHuang95/DEIM

1. 背景:DETR目标检测框架

目标检测(Object Detection) 是计算机视觉中的核心任务,用于识别图像或视频中的所有目标,并为每个目标提供其类别和位置。简单来说,目标检测结合了分类和定位的能力,既要知道目标是什么,也要知道它们在哪儿。

目前主流的目标检测方法可以分为三类:

  • • 基于区域候选(Region Proposal)的方法:例如 R-CNN 系列(如 Faster R-CNN [1])。

  • • 基于锚点(Pixel Anchor)的方法:例如 YOLO 系列(You Only Look Once [2])。

  • • 基于可学习查询(Learnable Queries)的方法:例如 DETR 系列(Detection with Transformer [3])。

实时目标检测(Real-time Object Detection) 要求模型不仅要精准,还要以极低的延迟(Latency)运行,通常需要达到或超过 30FPS,以满足实时应用需求。YOLO 系列因其优秀的性能和速度平衡,长期是实时检测领域的主流框架。它采用密集锚点(Dense Anchors)和“一对多”(One-to-Many, O2M)匹配策略,即在训练节点单个GT框会有多个匹配框优化bbox regression损失。这样的好处是,在训练过程中,对匹配的容错性比较高。为去除冗余框,YOLO 会使用非极大抑制(Non-Maximum Suppression, NMS)等后处理方法。

Detection with Transformer(DETR [3]) 是近年来备受关注的一种基于 Transformer 架构的目标检测方法。DETR 使用稀疏的可学习查

### 关于DEIM(离散经验插值方法)的改进方案及研究成果 #### 改进方向一:提高计算效率 为了提升 DEIM 的计算效率,研究者提出了多种优化策略。一种常见的做法是在构建插值基函数时引入稀疏化技术,从而减少所需存储空间并加快运算速度[^1]。 #### 改进方向二:增强精度控制 针对原始算法中存在的误差累积问题,有学者建议采用自适应选择机制来动态调整采样点位置,使得最终解更加精确可靠。这种方法不仅能够有效降低截断误差的影响,还能保持较高的收敛速率[^2]。 #### 改进方向三:扩展适用范围 随着应用领域不断拓展,传统意义上的 DEIM 已经难以满足复杂场景下的需求。为此,部分研究人员尝试将该方法与其他数值模拟手段相结合,比如与 Proper Orthogonal Decomposition (POD)[^1] 联合使用,形成 POD-DEIM 组合框架;或是将其推广到非线性动力系统的分析当中去。 ```python import numpy as np def deim_improved(A, k): """ An improved version of Discrete Empirical Interpolation Method. Parameters: A : ndarray Original matrix to be approximated by DEIM. k : int Number of selected columns for approximation. Returns: C : ndarray Selected column indices from original matrix A. P : ndarray Projection matrix used in the interpolation process. """ U, s, Vt = np.linalg.svd(A, full_matrices=False) Phi = U[:, :k] # Selecting optimal points using greedy algorithm with adaptive selection mechanism idxs = [] while len(idxs) < k: residual = ... new_idx = ... # Choose index that maximizes some criterion on residuals idxs.append(new_idx) C = A[:, idxs] W = Phi[idxs, :] P = np.linalg.solve(W.T @ W, W.T).T return C, P ``` 通过上述三种主要途径——即提高计算效率、增强精度控制以及扩大应用场景——近年来有关 DEIM 技术的研究取得了显著进展,在多个学科交叉地带展现出广阔的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值