推荐 | 10本不容错过的深度学习和神经网络书籍

深度学习是如今最火热的技术之一,但是对于有心入门却不得其法的同学来说,选择适合自己的书籍至关重要。

本着乐于助人、无私奉献的精神,小编特意为大家精选了 10本深度学习相关的书籍。这些书籍中,有些非常注重理论知识,主要关注神经网络和深度学习背后的数学和相关假设;有些则注重实战,通过代码而不是理论来讲解深度学习。而那种既有理论讲解,同时又有相应的实战训练的书籍。

本次电子书籍为CSDN回馈粉丝福利免费赠送,所有书籍均可在CSDN上在线学习(文末获取学习地址)。

现在,让我们一览这些书籍,比较优劣,看看哪些对于学习AI,或者说进一步理解这门艺术有最大的帮助:

第一本:《深度学习之图像识别:核心技术与案例实战》

本书全面介绍了深度学习在图像处理领域中的核心技术与应用,且提供了不同难度的案例供读者实践,可以在已有代码的基础上进行修改和改进,从而加深对所学知识的理解。

第二本:《keras深度学习实战》

 

通过阅读本书,读者不仅能学会使用Keras快捷构建各个类型的深度网络,还可以按需自定义网络层和后端功能,从而提升自己的AI编程能力。

第三本:《实战深度学习算法》

本书系统地介绍了如何用 Python 和 NumPy 一步步地实现深度学习的基础模型,可直接动手调试和观察整个训练过程,进一步理解模型及其算法原理。

第四本:《深度学习入门之PyTorch》

本书将从机器学习和深度学习的基础理论入手,从零开始学习PyTorch,了解PyTorch基础,以及如何用PyTorch框架搭建模型。

第五本:《深度学习之PyTorch物体检测实战》

本书从概念、发展、经典实现方法等几个方面系统地介绍了物体检测的相关知识,重点介绍了Faster RCNN、SDD和YOLO这三个经典的检测器,并利用PyTorch框架从代码角度进行了细致讲解。另外,《深度学习之PyTorch物体检测实战》进一步介绍了物体检测的轻量化网络、细节处理、难点问题及未来的发展趋势,从实战角度给出了多种优秀的解决方法,便于读者更深入地掌握物体检测技术,从而做到在实际项目中灵活应用。

第六本:《深度学习与计算机视觉——算法原理、框架应用与代码实现》

本书第1篇基础知识,介绍了人工智能发展历程、计算机视觉概要、深度学习和计算机视觉中的基础数学知识、神经网络及其相关的机器学习基础、卷积神经网络及其一些常见结构,最后对前沿的趋势进行了简单探讨。第2篇实例精讲,介绍了Python基础、OpneCV基础、简单的分类神经网络、图像识别、利用Caffe做回归、迁移学习和模型微调、目标检测、度量学习和图像风格迁移等常见的计算机视觉应用场景。

第七本:《TensorFlow深度学习实战》

本书将介绍如何有效地使用Google的开源框架TensorFlow进行深度学习。

第八本:《零基础学机器学习》

本书通过AI“小白”小冰拜师程序员咖哥学习机器学习的对话展开,内容轻松,实战性强,主要包括机器学习快速上手路径、数学和Python 基础知识、机器学习基础算法(线性回归和逻辑回归)、深度神经网络、卷积神经网络、循环神经网络、经典算法、集成学习、无监督和半监督等非监督学习类型、强化学习实战等内容,以及相关实战案例。

第九本:《百面机器学习 算法工程师带你去面试》

书中收录了超过100道机器学习算法工程师的面试题目和解答,其中大部分源于Hulu算法研究岗位的真实场景。

第十本:《图像处理、分析与机器视觉(基于LabVIEW)》

主要介绍基于LabVIEW的图像处理、分析与机器视觉系统的开发技术。

以上书籍免费获取方法:

1.扫二维码添加助教

2.备注“资料”即可免费学习

长按扫码,领取资料

扫码免费领取

额外福利

人工智能从基础到实战




计算机视觉

深度学习


获取方法:

1.扫二维码添加助教

2.备注“资料”即可免费领取

长按扫码,领取资料

扫码免费领取

### 回答1: 《图神经网络基础前沿与应用》是一本关于图神经网络的基础知识最新进展的书籍,介绍了图神经网络的基本概念理论,并探讨了其在各个领域的实际应用。 图神经网络是一种专门用来处理图数据的深度学习模型。与传统的深度学习模型主要针对向量矩阵数据不同,图神经网络可以有效地处理更复杂的图结构数据,例如社交网络、蛋白质相互作用网络等。 本书首先介绍了图神经网络的基本知识,包括图结构的表示方法、节点边的特征表示以及基本的图神经网络模型,如图卷积神经网络、图注意力网络等。然后,书中详细介绍了图神经网络的基础前沿,如图神经网络的理论基础图表示学习方法。这些内容能够帮助读者理解掌握图神经网络的基本原理算法。 此外,本书还探讨了图神经网络在多个领域的实际应用,包括社交网络分析、蛋白质相互作用预测、药物发现、推荐系统等。这些应用案例将帮助读者了解图神经网络在实际问题中的应用场景效果。 总之,《图神经网络基础前沿与应用》是一本介绍图神经网络的基础知识最新进展的重要参考书籍,对于对图神经网络感兴趣的学者、工程师研究者来说,是一本不可或缺的学习资料。 ### 回答2: 《图神经网络基础前沿与应用pdf》是一本关于图神经网络的基础知识前沿应用的电子书。该书通过系统地介绍了图神经网络的基本概念、原理算法,同时还关注了目前图神经网络的最新研究进展应用场景。 首先,该书从基础开始介绍了图神经网络的概念基本理论,包括图的表示方法、节点嵌入、图嵌入等内容。通过对这些基础知识的学习,读者可以对图神经网络的基本原理有一个清晰的理解。 其次,该书还深入探讨了图神经网络在各个领域的应用。例如,在社交网络分析中,图神经网络可以用于社区发现、节点分类链接预测等任务;在化学分子分析中,可以用于分子表示、药物发现反应预测等任务。通过这些实际的应用案例,读者可以更好地了解图神经网络的实际应用价值。 此外,该书还着重介绍了图神经网络的前沿研究方向。例如,介绍了基于图神经网络的图生成模型、图对齐图增强等研究方向。这些前沿的研究内容可以帮助读者了解图神经网络的进一步发展趋势,并为读者提供进一步深入研究的方向。 总体而言,这本《图神经网络基础前沿与应用pdf》是一本非常有价值的书籍,它系统地介绍了图神经网络的基础知识前沿应用,并给出了具体的应用案例研究方向。对于对图神经网络感兴趣的读者来说,这本书是一本不可错过的参考资料。 ### 回答3: 《图神经网络基础前沿与应用pdf》是一本关于图神经网络的基础知识最新研究进展的电子书。图神经网络是一种用于处理图数据的机器学习模型,它能够捕捉图数据中的节点边之间的关系,广泛应用于社交网络分析、推荐系统、化学分子结构预测等领域。 这本电子书首先介绍了图神经网络的基础概念,包括图的表示方法、节点边的特征表示以及图神经网络的基本结构。然后,它介绍了当前图神经网络领域的前沿研究,包括图卷积网络、图注意力网络、图生成模型等。这些模型在提高图数据的表征能力、处理大规模图数据方面都取得了重要进展。 此外,这本电子书还详细介绍了图神经网络在不同应用领域的应用案例。例如,在社交网络分析中,图神经网络可用于社区发现、社交关系预测等任务。在推荐系统中,它能够利用用户行为图来实现个性化推荐。在化学领域,图神经网络能够预测分子间的相互作用力,有助于新药物的研发。 总的来说,《图神经网络基础前沿与应用pdf》是一本权威且实用的电子书,对于想深入了解图神经网络的研究者从业者来说,是一本不可多得的参考资料。它综合了基础知识前沿研究,同时还提供了丰富的应用案例,有助于读者全面理解应用图神经网络
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值