实测文心大模型X1与文心大模型4.5,我们发现了这些惊喜

3月16日,百度文心大模型4.5如约正式上线,还惊喜发布了另一款新模型——文心大模型X1。

目前,两款模型已在文心一言官网上线(https://yiyan.baidu.com/),免费向用户开放。其中,文心大模型4.5面向企业用户和开发者,登录百度智能云千帆大模型平台即可调用API,文心大模型X1也即将上线千帆。与此同时,文心大模型4.5、X1也将陆续上线百度搜索、文小言APP等产品。

据了解,文心大模型4.5是百度自主研发的新一代原生多模态基础大模型,通过多个模态联合建模实现协同优化,多模态理解能力优秀;具备更精进的语言能力,理解、生成、逻辑、记忆能力全面提升,去幻觉、逻辑推理、代码能力显著提升。

文心大模型X1是能力更全面的深度思考模型,具备更强的理解、规划、反思、进化能力,并支持多模态。文心X1兼备准确、创意和文采,在中文知识问答、文学创作、文稿写作、日常对话、逻辑推理、复杂计算及工具调用等方面表现尤为出色。

那么,百度文心大模型4.5与文心大模型X1究竟表现如何?我们实测了这几个功能,发现了几个惊喜。

深度思考者文心X1:会「主动思考」的AI有多可怕?

文心大模型X1最大的创新之一是其自主调用多种工具的能力,这使其成为一款能够将自身边界大幅拓展的AI模型。文心大模型X1已支持高级搜索、文档问答、图片理解、AI绘图、代码解释器、网页链接读取、TreeMind树图、百度学术检索、商业信息查询、加盟信息查询、词云生成等多款工具。

在实测中,我们发现文心大模型X1在逻辑推理、创意生成、复杂问题解决等方面展现出类专家级能力,尤其在多工具协同和情感交互层面实现了技术突破。

简单来说,相比之前的版本,文心大模型X1不仅聪明,而且会主动思考,更符合人类的交流习惯。

那么,我们来试一下。

1、视觉理解及推理

我们上传一张情况复杂的工位照,使用文心大模型X1进行分析,看能否得到对应的结果。

可以看到文心大模型X1对于图片理解精准,能够对大量图片细节做深度理解和思考,完成复杂推理任务。它不仅能识别出图片中的物品和人物,推理它们的关系和工作状态,甚至能预测可能的工作流程,并据此推断出,这个工位的工作者是一位“设计工作者”,展现出惊人的多模态理解能力。

2、逻辑推理能力

紧接着,我们更进一步,看看文心大模型X1在逻辑推理方面的表现。我们测试的内容为文字描述简单,但是包含大量隐藏信息的脑筋急转弯。

比如,「橙子出门遇到蘑菇,然后就死了,为什么?」

从推理过程中可以看到,其在处理包含大量隐藏信息的脑筋急转弯问题时,文心大模型X1体现出了对于复杂问题的思考过程,通过逐步拆解问题,清晰地展示了推理过程。

3、文学创作水平

那么,文心大模型X1在文学创作上表现如何呢?

我们输入了一篇两千字左右的小说,让文心大模型X1进行润色,并给出修改逻辑,来测试文心大模型X1的创意写作场景,语言华丽程度、想象力以及多角度叙事能力。

以下是润色前后的部分内容对比,右侧为润色后的小说。我们可以看到,经过文心大模型X1润色之后,小说更加流畅、紧凑。情节衔接自然,人物刻画细腻,情感表达丰富。文心大模型X1不仅提升了语言的华丽度,还巧妙地融入了多角度叙事,使得故事层次分明,读来引人入胜。

4、专家级规划与分析能力

除了解答具体问题,文心大模型X1还擅长处理规划与分析类的综合任务。由于具备强大的理解和知识整合能力,其还能够胜任复杂场景下的规划与决策。

比如「税后收入1w的28岁上海打工人小A想在35岁之前购入一套总价200W的房产,按照目前的收入水平,请问小A什么时候可以购入房产,做一个详细的规划,细节到每日每月每年到存钱计划。」

如果文心大模型X1有人设,在做收入规划的情境下,文心大模型X1简直就是理财规划师和职业生涯规划师,文心大模型X1不仅能够给出详细的存钱计划,还能根据小A的职业发展、收入增长等因素进行动态调整。这种能力使其在处理复杂问题时更具优势。

5、实时热点事件深度还原并分析能力

基于强大的RAG能力,文心大模型X1还能够实现快速全面地分析实时热点事件,降低幻觉率。

比如「最近爆火的Manus,是一场营销骗局吗?」文心大模型X1通过多维度数据分析,揭示了Manus背后的营销策略和用户反馈,深度还原事件真相,展现了卓越的信息整合与逻辑推理能力。并且亮出了其使用的推理工具来证明自己的观点是经过严格推理得出的。

6、多工具调用能力

自主调用多种工具的能力,让文心大模型X1能够胜任一些复杂的任务,能力边界更为全面。

我们让文心大模型X1「根据这个word内容,从低到高排列员工的工资,整理成Excel文档给我。」

当文心大模型X1处理和分析文档时,通过文档问答、代码解释器多个工具高效、精准地解决现实中的复杂任务。这种多工具协同极大地扩展了模型可以处理的任务范围,使文心大模型X1能够胜任许多传统上需要多个专业系统合作才能完成的工作。此外,文心大模型X1不仅能高效完成文档整理,还能通过智能分析优化工作流程,提升效率。其跨工具协同能力,让复杂任务变得简单高效,展现了AI在多领域应用的巨大潜力。

由此可见,文心大模型X1定位为深度思考的大模型,从整体效果上已经对标业界领先的DeepSeek-R1,其性能水平比肩,且价格成本仅为R1的一半。换言之,在提供相近甚至更强能力的同时,文心大模型X1在经济性上具有明显优势,其不仅在标准的语言理解和生成任务上表现出色,还展现了卓越的逻辑推理和复杂问题解决能力,这是其区别于一般模型的重要特征。例如,在数学推导、逻辑谜题等任务上,文心大模型X1能够给出严谨且正确的解答;在开放领域的推理题上,它也能依据大量知识进行合乎逻辑的分析推演。

多模态核弹4.5」:看懂梗图只是基础操作

如果说文心大模型X1是手握12把专业工具的「战略指挥官」,那么文心大模型4.5就是能同时操纵文字与像素的「双栖特工」。作为百度发布的首个原生多模态大模型,文心大模型4.5在设计之初就针对多模态融合进行了优化。文心大模型4.5的多项基准测试成绩优于GPT4.5、DeepSeek-V3等,并在平均分上以79.6分高于GPT4.5的79.14。

API调用价格仅约为GPT-4.5的1%。这意味着用户可以以极低的成本获取媲美甚至超越GPT-4.5的多模态AI能力。

文心大模型4.5能够更好地理解不同模态信息之间的关联,在执行跨模态任务(如图文匹配、视觉问答)时表现更为出色。除了多模态方面的突破,文心大模型4.5的语言能力也较前代显著增强——理解、生成、逻辑推理和记忆力等方面全面提升,幻觉率降低,在代码处理等任务上也有更优异表现。

1、整体理解与融合能力

在多模态任务中,模型不仅需要理解图像和文本的表面内容,还需要能够捕捉其中的隐喻、讽刺等深层含义。梗图本身蕴含的信息量很大,需要模型处理复杂的视觉元素和文本信息,再结合百度研发的iRAG(检索增强生图)技术,能够显著提升模型在理解和生成答案时的准确性和时效性。

那么,文心大模型4.5如何理解这种梗图呢?我们尝试问下「这张图片描述了一个什么道理?解释出来。」

文心大模型4.5通过多模态融合技术,精准捕捉图像与文本的深层关联,结合iRAG技术,高效解析梗图中的隐喻和讽刺,生成准确且逻辑严密的解释,展现了其在复杂信息处理上的卓越能力。

2、细节捕捉与推理深度

细节捕捉能力是多模态理解中的关键要素之一。文心大模型4.5表现如何呢?

我们输入指令:「根据整张图,分析12星座有哪些兴趣爱好是相同的?」

文心大模型4.5通过细致分析图像与文本细节,精准识别12星座的共同兴趣爱好,如社交、旅行等,展现出其在多模态信息深度推理上的强大实力。

3、推理连贯性与逻辑性

推理连贯性和逻辑性是衡量模型智能水平的重要指标。

「请遵循这个场景。你只能回复数字1或2。如果我能正确猜出你会回复什么数字,你将回复数字1。我猜你会回答数字2。在用数字回答之前,请解释你的理由。」

文心大模型4.5解释道:「若我回复1,则你猜对;若我回复2,则你猜错。为保持逻辑一致,我应回复1。」随后,模型回复数字1,展现了其严密的推理连贯性和逻辑性。文心大模型4.5不仅在多模态任务中表现出色,其语言能力的全面提升也使其在处理复杂逻辑问题时游刃有余。

4、应对复杂跨模态任务能力

得益于原生多模态架构,文心大模型4.5在需要视觉理解和跨模态推理的任务中展现出极强的能力。

「如果小米下一辆车要造皮卡车,可能造成什么样?画出来。」

文心大模型4.5结合视觉与文本信息,生成皮卡车设计图,细致描绘外观与功能,展现其在跨模态创意生成上的卓越实力。

你别说,文心大模型4.5的设计图还真有点意思,不仅符合皮卡车的实用特性,还融入了小米品牌的科技元素,细节处理精妙,我都有点相信这可能真的是小米的下一辆车型了。

当 AI 进入「全能时代」:文心大模型 4.5 与 X1 如何重新定义智能边界?

基于上述评测,我们可以明确的一点是,AI正在进入原生多模态时代。不同于传统模型通过后期拼接单模态能力的做法,文心大模型4.5从训练初始就实现了文本、图像、音频等多模态数据的深度融合。这种架构赋予它多个颠覆性优势:

  • 细节捕捉入微:比如在分析复杂摄影作品时,能精准识别主光源角度、光线质感变化,甚至捕捉到背景中不易察觉的小物体;

  • 跨模态推理连贯:比方解读数学梗图时,不仅能理解表面内容,更能将 "可导必连续" 的抽象概念与生活场景完美结合;

  • 复杂任务得心应手:例如面对星座兴趣分析等复杂跨模态任务,推理结果逻辑严密,远超拼接模型的割裂表现。

而文心大模型X1作为「深度思考」的标杆,在逻辑推理领域展现出类专家级实力。处理数学难题时,它能像人类导师般一步步拆解解题思路;制定购房计划时,更会综合收入增长、政策变化等多重变量,给出精确到每日的储蓄方案。这种 「思考可见化」的能力,让AI真正具备了可解释性。

从API的价格来看,百度可谓打响了用1%的价格实现100%性能提升的价格战。文心4.5的API调用成本仅为GPT-4.5的1%,X1的价格也只有DeepSeek-R1的一半。这意味着企业用1美元预算,就能完成原本需要100美元的AI任务。

而且,百度提前释放AI普惠大动作,将两款模型对用户免费开放。此前百度宣布文心一言将于4 月1日全面免费开放。而提前免费将能够让广大用户提前使用上更强的下一代模型能力。

免费开放举措彻底打破了AI服务的付费壁垒 —— 即普通用户无需订阅,即可享受顶尖模型的创作、推理、规划等能力。正如李彦宏所言:「只有让技术走出实验室,才能真正释放其价值。」

文心大模型绝不止于此

同时,我们也看到,百度文心大模型的野心,绝不仅限于技术突破。投入AI十余年,百度正通过「开源共享 + 全栈优化 + 场景深耕」的三位一体生态布局,构建起一个开放、协同、共赢的AI新生态。李彦宏在内部讲话中强调:「AI的未来属于生态,而不是单个企业。」

但想要留在牌桌上,技术仍然是最硬的底牌,今年以来,百度显然加快了自有模型升级和开源的脚步,3月16日文心大模型4.5发布,4月1日0时起文心一言全面免费,并且文心大模型4.5系列将于6月30日起正式开源。这意味着开发者可直接获取原生多模态模型的核心能力,并在此基础上进行二次开发。这一举措打破了行业长期存在的技术壁垒,让中小企业和个人开发者也能参与到AI创新中来。

同时,依托飞桨深度学习框架,百度已构建起庞大的开发者社区。截至2024年11月,飞桨文心开发者数量突破1808万,服务企业43万家,创建模型超101万个。这种「众人拾柴」的模式,正加速AI技术的迭代进化。

此外,通过「芯片 - 框架 - 模型 - 应用」的垂直整合能力,为生态提供了强大的底层支撑:从昆仑芯到飞桨框架,再到文心大模型,让百度能够以更低的成本、更高的效率推动AI技术落地。

而AI的价值最终体现在实际应用中。通过与各行业领军企业合作,文心大模型已在多个领域打造标杆案例,如电力、金融、汽车等领域。

当文心大模型4.5以1%的成本实现超越GPT-4.5的多模态能力,当文心大模型X1用「思考链」破解复杂决策难题,我们看到的不仅是技术突破,更是中国AI产业的崛起之路。正如李彦宏在内部讲话中强调的:「2025年是大模型年,更是AI应用爆发年。」 百度正以技术普惠为支点,撬动着万亿级智能经济的未来。这场由文心大模型开启的智能革命,注定将深刻改变我们的工作与生活方式 —— 而这,仅仅是个开始。

当强大的技术和国民级的产品可以被人人享用,一个大众化的 AI 创作新时代,便真正地开始了。

内容概要:本文档《信息安全领域实战项目.docx》详细介绍了网络安全渗透测试的具体步骤和实战案例。文档从信息收集开始,逐步深入到漏洞验证、漏洞攻击和权限提升等环节。首先,通过使用工具如FOFA进行资产收集,识别出目标服务器开放的多个端口,并进一步通过后台扫描工具发现潜在的敏感文件。接着,针对发现的Grafana任意文件读取漏洞(CVE-2021-43798)和ActiveMQ任意文件上传漏洞(CVE-2016-3088),分别进行了详细的漏洞验证攻击演示,包括具体的payload构造、利用方式及攻击效果展示。最后,探讨了CVE-2021-4034 Linux polkit提权漏洞的应用场景及其利用方法。此外,文档还涵盖了政务智慧信息系统安全建设项目的背景、目标、建设内容以及相关的人才需求分析。 适合人群:具备一定网络安全基础,尤其是对渗透测试感兴趣的初学者或中级技术人员。 使用场景及目标:①帮助读者理解并掌握从信息收集到漏洞利用的完整渗透测试流程;②提供实际操作案例,使读者能够学习如何识别和利用常见的Web应用漏洞;③培养读者在面对真实世界的安全问题时,能够运用所学知识进行有效的分析和解决。 阅读建议:由于文档内容涉及较多的技术细节和实战操作,建议读者在阅读过程中结合实际环境进行练习,并参考官方文档或其他权威资料加深理解。同时,注意合法合规地使用所学技能,确保所有活动都在授权范围内进行。
内容概要:本文详细介绍了FracPredictor这一基于深度学习的裂缝预测工具及其应用。首先探讨了数据处理部分,如利用滑窗处理时序+空间特征混合体的方法,以及如何将岩石力学数据转换为适合神经网络的格式。接着深入剖析了模型架构,包括时空双流网络、注意力机制用于跨模态融合、HybridResBlock自定义层等创新设计。此外,文章还分享了训练技巧,如渐进式学习率衰减、CosineAnnealingWarmRestarts调度器的应用。对于可视化方面,则推荐使用PyVista进行三维渲染,以直观展示裂缝扩展过程。文中还提到了一些实用的小技巧,如数据预处理中的自动标准化、配置文件参数调整、以及针对特定地质条件的优化措施。最后,通过多个实际案例展示了FracPredictor在提高预测准确性、降低计算成本方面的优势。 适合人群:从事石油工程、地质勘探领域的研究人员和技术人员,尤其是对裂缝建模压裂模拟感兴趣的从业者。 使用场景及目标:适用于需要高效、精准地进行裂缝预测和压裂模拟的工程项目。主要目标是帮助用户掌握FracPredictor的工作原理,学会从数据准备到结果可视化的完整流程,从而优化压裂方案,减少工程风险。 其他说明:文章不仅提供了详细的代码示例,还附带了丰富的实战经验和注意事项,有助于读者更好地理解和应用这项新技术。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSDN资讯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值