奇富科技攻克零样本学习难题 全球首个基于多模态大语言模型的TRIDENT框架引爆IJCAI2025

近日,奇富科技联合北京交通大学发表的论文Leveraging MLLM Embeddings and Attribute Smoothing for Compositional Zero-Shot Learning,凭借大语言模型与零样本学习的颠覆性创新,从5404篇论文中杀出重围,强势登顶人工智能“奥林匹克" IJCAI2025会议。这是全球首个将多模态大语言模型(MLLM)深度应用于组合零样本学习的技术突破,有望推动我国在AI基础技术与产业应用深度融合方面占据先发优势。

IJCAI(即国际人工智能联合会议,International Joint Conference on Artificial Intelligence)是人工智能领域最主要的国际学术会议之一。IJCAI是中国计算机学会(CCF)推荐的A类国际学术会议,也是人工智能领域历史最悠久的顶级学术会议之一,迄今已举办了34届。本届论文通过率为19.3%,相当于每5篇投稿就有4篇被拒之门外。

在IJCAI严苛筛选下,奇富科技的多模态大语言模型零样本学习研究成果亮眼。其提出的 TRIDENT 创新框架,通过特征自适应聚合、MLLM 嵌入及属性平滑等技术,有效攻克组合零样本学习中的背景干扰、语义捕捉等难题,性能达当前最优水平。该成果在金融科技领域极具应用价值,既能基于多模态数据分析精准识别智能风控中的新型风险组合,提升风险评估效率,又能在智能客服场景下快速理解用户复杂语义,优化金融服务体验。

在这里插入图片描述
奇富科技首席算法科学家费浩峻表示:此次成果是奇富科技科研实力的有力彰显,契合公司深耕金融科技、推动创新应用的战略布局。论文中的创新技术,将助力公司在智能风控、智能客服等场景,精准洞察用户需求,实现更人性化、高效的金融服务。

基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CNN硬件加速器入门级项目),该项目是个人毕设项目,答辩评审分达到98分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CNN硬件加速器入门级项目)基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CNN硬件加速器入门级项目)基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CNN硬件加速器入门级项目)基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CNN硬件加速器入门级项目)基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CNN硬件加速器入门级项目)基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CNN硬件加速器入门级项目)基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CNN硬件加速器入门级项目)基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CNN硬件加速器入门级项目)基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CNN硬件加速器入门级项目)基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CNN硬件加速器入门级项目)基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CNN硬件加速器入门级项目)基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CNN硬件加速器入门级项目)基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器源代码(CN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSDN资讯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值