开源重构AI竞争格局,第20届开源中国开源世界大会重磅来袭!

人工智能的竞争,不再只是闭源竞赛的角力场,开源力量正强势介入,重写整场博弈。从 LLaMA 到 Mistral,再到阿里 Qwen、小米的 MiMo,一系列开源大模型不仅迅速追赶闭源模型,甚至在部分评测中实现了超越。与此同时,智能体系统也在经历飞跃式发展——从早期的 LangChain 实验项目,到如今愈发成熟的 SuperAgent、MetaGPT 和 OpenDevin,开源社区正以前所未有的速度推动“从可行到可用”。然而,想要真正释放 AI 的全部潜能,开源这条路该怎么走?如何平衡开放与可控,如何推动从 AI 整个生态的研发走向产业落地?答案,或许就藏在即将召开的这场盛会中。

2025 年 6 月 13-14 日,第二十届「开源中国开源世界大会」将在北京万寿宾馆隆重举行。本届大会以“共建人工智能时代的开源生态”为主题,汇聚院士、开源与 AI 领域的专家学者、业界先锋与全球实践者,聚焦开源热点和行业创新应用,围绕新时代开源的应变机制、基于开源的人工智能、Kuberetes 及其应用、云原生、区块链、开源生态等议题,展开一场场关于技术、模式与生态的深度分享。

四大核心议题,直击 AI+开源融合的机遇与痛点!

为期两天的大会将围绕技术演进与产业落地的双重需求,设置兼具前瞻性与实用性的议题,力求打通从技术研发、生态治理到商业化应用的关键环节。以下四大核心方向,将成为本届大会最值得关注的焦点所在:

  • 发展人工智能时代的开源:探讨如何构建支持大模型训练与部署的开源基础设施,推动模型权重开放、训练数据透明、工具链标准化建设,打造可信、可控、可演进的 AI 开源技术体系。话题将涵盖开源推理引擎、模型精度与安全并重的评估机制等。
  • 开源创新,数字化转型与智能化重构:聚焦企业与行业如何借助开源力量,实现从传统 IT 架构向 AI 驱动的智能系统演进,包括开源在智慧城市、金融科技、智能制造等垂直领域的实践探索,企业如何通过开源实现敏捷开发、降本增效和数字能力重塑。
  • 推动大模型在企业中的应用:深入探讨开源大模型在企业真实业务环境中的应用案例与实践经验,包括跨模态大模型的部署优化、多语言适配、安全风控集成、行业定制化能力构建等,助力开源 AI 项目转化为真正可用、可控、可商业化的生产力工具。
  • 推动语言大模型转轨发展:应对 AI 时代带来的价值观挑战,本论坛将探讨如何完善开源治理模型,构建公平透明的贡献机制与责任共担机制;推动技术伦理共识形成,强化开源社区对模型偏见、算法歧视、数据合规等问题的应对能力,打造具备可持续发展能力的开源治理生态。

首批重磅嘉宾阵容发布!

大会目前已公布首批演讲嘉宾,覆盖国际开源社区、头部 AI 企业的代表。他们将带来涵盖顶级开源项目及平台的构建、生态治理等多维主题,展开一场技术与理念的深度交流。

陈梓立 | ASF 董事会成员、孵化器导师

陈梓立是一位经验丰富的开源倡导者,现任 ASF 董事会成员、孵化器导师,曾经监督孵化出 Kvrocks、OpenDAL、StreamPark、Answer 等 ASF 顶级项目。他同时是实时云数据平台 ScopeDB 的联合创始人。

Abigail Cabunoc Mayes | GitHub 高级项目经理

Abigail Cabunoc Mayes(@abbycabs)是 GitHub 的一位开源领袖,致力于设计并推广各类项目,助力开源维护者及整个生态系统持续繁荣。她的工作聚焦于可持续性与包容性,旨在连接全球开源社区,推动数字基础设施的长期健康发展。

在加入 GitHub 之前,Abigail 曾在 Mozilla 领导可信 AI 项目的开源合作工作,并创办了 “Mozilla Open Leaders” 项目,支持了全球 600 多个开源项目。作为数字公共产品的倡导者,她还与 UNICEF 等组织合作,推动开源可持续发展。

Abigail 现任 OpenJS 基金会董事会成员,是《Journal of Open Source Software》开创编辑之一,主持播客 “JOSSCast:为研究人员打造的开源”,并积极参与 SustainOSS 的组织工作。

演讲议题:架起桥梁:全球开源协作

王庆 | Intel中国云原生软件研发总监

王庆博士是英特尔中国软件技术事业部云原生软件研发总监。2015 年至 2023 年连续 9 年担任开源基础设施基金会个人独立董事,现 Linux 基金会下 SODA 基金会联盟委员会主席和云原生计算基金会大使,中国开放智算产业联盟技术委员会主席,木兰开源社区技术委员会成员,以及中国计算机学会开源发展委员会常务委员。他与他团队的工作重点包括虚拟化、云计算以及云原生AI等。

演讲议题:企业人工智能开源平台OPEA

议题简介:本次演讲将介绍企业人工智能开源平台 OPEA 的设计理念、技术架构及其在企业私有部署中的实践价值。我们将探讨如何通过 OPEA 提供的模块化组件与参考工作流,快速构建生成式 AI 应用,包括大模型推理、RAG 管道、多模态处理等关键能力。同时,演讲还将分享 OPEA 在制造、金融、电信等行业的实际落地案例,展示其在安全、成本、性能三方面的优势。听众将收获一套面向企业 GenAI 落地的开源解决方案及合作生态的深入理解。

此外,还有更多开源先锋企业、实践者也将现身大会现场,分享他们在技术突破、模式创新与生态建设中的真实经验,讲述开源如何在 AI 的时代浪潮中落地生根、开枝散叶。更多嘉宾即将揭晓,详情见大会官网:https://ocow.ccidmedia.com/index.html

在 AI 技术不断演化、开源力量持续崛起的关键节点,这不仅是一场前沿思想的碰撞,更是一场关于未来科技治理与全球协作模式的共创实验。2025 第二十届开源中国开源世界大会,期待与你一起,探索人工智能时代的开源未来,共创更加繁荣、开放、可持续的 AI 新生态。

### FBI Tree Implementation in Python An FBI tree is not a standard data structure or algorithm within common computer science literature, which suggests that this might be either a specialized term used in specific contexts or possibly confused with another concept. However, based on typical conventions for creating trees and binary structures in Python, an interpretation can be made. For demonstration purposes, let's assume "FBI" stands for a custom type of Binary Feature Inspection tree designed to inspect features at each node as part of some decision-making process similar to how nodes operate in other types of decision trees but specifically tailored towards certain applications like those mentioned in Windmill’s capabilities such as handling different programming languages including Python[^1]. Below is an example implementation: ```python class Node: def __init__(self, feature=None, threshold=None, left=None, right=None, value=None): self.feature = feature # The attribute being inspected. self.threshold = threshold # Threshold for splitting (if applicable). self.left = left # Left child node. self.right = right # Right child node. self.value = value # Value if it's a leaf node. def build_fbi_tree(data, labels): """Builds an FBI tree recursively.""" # Base case: If all examples have same label -> create leaf node. unique_labels = set(labels) if len(unique_labels) == 1: return Node(value=unique_labels.pop()) # Another base case could involve stopping criteria related to depth, # number of samples, etc., depending on requirements. # For simplicity, choose first feature as split criterion here; # In practice, more sophisticated methods would select optimal splits. best_feature_index = 0 # Split dataset into two parts according to chosen feature. true_data, false_data = [], [] true_labels, false_labels = [], [] for i, sample in enumerate(data): if sample[best_feature_index]: true_data.append(sample) true_labels.append(labels[i]) else: false_data.append(sample) false_labels.append(labels[i]) # Recursively construct subtrees. left_subtree = build_fbi_tree(true_data, true_labels) right_subtree = build_fbi_tree(false_data, false_labels) return Node(feature=best_feature_index, left=left_subtree, right=right_subtree) def predict(node, instance): """Predict using the constructed FBI tree.""" if node.value is not None: return node.value if instance[node.feature]: return predict(node.left, instance) else: return predict(node.right, instance) ``` This code defines a simple version of what might constitute an FBI tree where decisions are made based on whether elements meet conditions defined by thresholds associated with particular features. Note that actual implementations may vary widely based on intended functionality beyond basic inspection tasks described above.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSDN资讯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值