在火山引擎2025春季原动力大会上,字节跳动技术副总裁洪定坤把AI Coding玩出了新花样——当场拿出手机,给大家展示了一个自己用TRAE开发的学英语应用:
随后,他也公布了整个开发过程:大概三天里,除去工作、吃饭、休息的时间,完全是用一些碎片时间做出了这个应用。
通过8个Prompt,一个能理解语义、能交互的背单词应用就做好了!
有人可能会问:为什么需要8个Prompt?通常不是一段Prompt就能搞定吗?
区别于小白“说需求无逻辑”的Prompt 写法,洪定坤的核心逻辑是把程序员的逻辑拆解为工程化思维,用自然语言精准传递给AI 。
简单来说,就是用“和同事同步技术方案”的方式写需求。
话不多说,以这款背单词应用为例,先来感受一下:
从业务需求角度看,我们可以把这个背单词的应用逻辑理解为“单词复习任务调度”。此时,向AI提出指令:通过words_resite_record
表的next_review_time
字段,筛选出用户待复习单词,再利用word_id
做表关联,从answer_list
表随机选干扰项,生成三类基础题型。
这样一来,AI就能更好地理解应用逻辑,即刻生成带题干、选项的完整的考题。
想知道单词的复习进度?对应到实际业务里,其实就是“算法调度”,简单来说,就是要把算法逻辑喂给AI。通过“判错逻辑 → 数据更新 → 曲线计算”的流程设计应用功能,让它像后端服务一样处理状态变更和调度。
如果在此基础上,还想再增加一些迭代功能,这就意味着接口需要扩展、业务校验需要新增、业务规则需要更改,此时,就需要把工程化逻辑交给AI,AI会根据逻辑生成覆盖“需求 → 开发 → 测试”工程化流程。
当然,你也可以给这个应用增加一些个性化的标签,通过创建标签表来存储配置,让单词复习流程根据配置动态调整。
大会现场,洪定坤还展示了这款应用的实际效果:不仅页面简单,输入问题即可交流任何问题,并且支持中英文流畅对话。同时,应用还集成了扣子(Coze)开发的Agent能力,可自动提取高频词汇、专业术语,加入个人学习词库,随时随地汇总生僻词汇。
除此之外,应用还能够针对不同掌握程度设计题目(如“中文释义填空”“英文场景造句”)进行智能交互。登录之后,可将单词加入我的学习页面,并通过标签分类管理,如“熟练掌握”或“听懂看懂”。复习时,系统还会根据掌握程度出题,堪比私人定制的学习助手。
洪定坤表示:“这并不是一个Demo,产品在昨天晚上已经发布了,后续也会将整个代码放到GitHub上。”
体验地址如下,感兴趣的同学可以提前去尝尝鲜了。
https://sstr.trae.com.cn
在观众惊呼“这届AI进化太快了”之余,洪定坤进一步表示,AI Coding的潜力还远不止于此
AI Coding升级:不仅仅是编程能力的跃迁
这个案例的背后,不仅仅是字节跳动对AI Coding编程生产力的思考,也是字节跳动生态能力的体现,更是字节跳动技术普惠理念的实践。
据洪定坤介绍,此次上线的AI Coding应用能力“进化”主要集中在两个方面。
-
动态上下文补全
在代码补全方面,区别于传统的代码补全,TRAE突破了传统IDE插件的局限,实现“上下文感知 + 流程预判”的双重进化。以前,工程师在编写代码时,往往需要手动查找和输入大量细节,耗时且易出错。现在,在TRAE的辅助下,工程师基于当前代码光标位置,即可快速补齐上下文。同时,区别于传统代码补全的单次操作,TRAE还能预判下一步修改位置,补全当前代码后自动将光标跳转至下一逻辑节点,实现无缝衔接。这种“智能引导”机制,大幅提升了编程效率。
“这样的补齐效率和生成效率都是大幅提升的,并且也更实用。”洪定坤表示。
-
自然语言编程
区别于Vibe Coding,其自然语言编程方式并非简单的“需求指令生成代码” ,而是工程师通过自然语言描述技术方案,AI据此生成可执行代码的协作模式,即“人类主导逻辑框架,AI填充技术细节” 的协作闭环。
一方面,工程师可以更专注于逻辑构思,而非繁琐的代码编写,仅用自然语言描述复杂逻辑(如背单词应用的选项匹配算法),AI即可自动生成代码,仅需调整细节。例如描述“优先匹配用户错误率 > 60%的词汇,并排除近3天已掌握单词” 的逻辑,AI可自动生成包含缓存策略和数据过滤的完整代码。
另一方面,生成的代码并非简单Demo,而是符合企业级开发规范的工程化产物。这不仅节省了开发时间,更确保了代码质量,真正实现了技术与需求的深度融合,让工程师从繁琐的编码中解放,专注于创新和优化。
洪定坤表示:“今天,字节内部AI编程的使用率已经非常高了,超过80%的工程师在使用 TRAE 这样的产品辅助开发。截止目前,TRAE的月活用户已经超过了100万。这个数字也说明,AI Coding已经在程序员的工作中切切实实的起到了重要的作用。”
这一切的背后,事实上也是字节跳动内部生态链条的补齐。
其一,基于豆包1.6模型的强大编程能力,TRAE团队针对工程开发场景进行了额外后训练,强化逻辑解析与代码生成能力,对比1.5版本代码准确率大幅提升;其二,集成字节跳动内部工具链(如Meego需求管理、Argos故障诊断)等,实现“自然语言描述 - 代码生成 - 测试部署”的闭环。
此外,从AI编程工具的演进趋势来看,TRAE 的前身MarsCode以插件形式集成于VS Code/JetBrains,仅提供基础代码补全。但随着大模型能力的迭代升级,传统插件形态、补全代码功能已经不能完全满足开发者对高效、全面开发流程的需求,开发者对IDE提出了更高要求——如何通过AI与IDE的深度融合,实现更完整的开发流程。而这正是TRAE IDE为AI编程打造原生开发环境的初衷——“AI也只有做到‘听得懂人话’、‘看得懂上下文’,才可能是Real AI Engineer,迈向AI Development。”
从AI Coding到AI Development的未来图景
回看编程语言的进化历史,从机器语言到高级编程语言,编程语言始终是技术进步的基石。而AI的出现,将编程语言的门槛进一步降低,使得数百人、数千人的专长,有望扩展至百万计的普通人。未来,AI不仅是工程师的助手,更是全民创新的利器,生产力将因此迎来质的飞跃。
字节跳动作为一家深度投入大模型研发与技术创新的公司,正亲身经历着这场从“AI Coding”向更广阔的“AI Development”的范式演进——AI对开发领域的变革绝非仅限于代码的自动补全或生成,它将深刻重构软件开发的整个生命周期和角色分工。
-
开发范式的升维:从“写代码”到“定义需求与验证结果”
未来的“开发者”将更聚焦于问题定义、需求拆解、架构设计和高阶逻辑的构建。AI将承担大量底层、重复性、模式化的编码任务,甚至能根据模糊的自然语言描述,自动生成原型、设计接口、编写测试用例。
TRAE的实践已经让我们看到了这一趋势的萌芽。无论是专业工程师还是初学者都能够通过与AI的自然语言交互来表达意图,AI负责将其转化为可执行代码。这本质上是将开发的核心从“如何实现”(How)部分转移到了“实现什么”(What)和“是否正确”(Validation)。
-
开发主体的泛化:人人皆可成为“创造者”
AI的下一步进化是赋能非专业开发者,例如教师可以快速搭建教学工具,业务人员能自行开发数据分析脚本,创业者能低成本验证产品原型。而这正与字节跳动的技术普惠理念不谋而合。
正如洪定坤所言:“模型能力的进步使得像TRAE这样的产品有了真正落地的机会。”
-
研发效能的革命性提升
对专业工程师而言,AI Development意味着效率的指数级提升。AI不仅能生成代码,更能理解上下文、进行智能重构、自动修复Bug、优化性能、生成详尽的文档,甚至预测潜在风险。这将释放工程师的创造力,使其专注于更具战略性和创新性的工作。
而字节跳动的愿景是追求智能上限,实现技术普惠,让更多人掌握代码工具,提升生产力。即TRAE 想做的不只是AI Coding,更是AI Development。
2025年是充满变化和惊喜的一年,从年初的DeepSeek到爆火的AI 编程,我们似乎正在一步步见证着AI时代的奇迹,而这些变化的背后事实上都在指向AI的普惠性,当强大的技术和国民级别的AI产品不断降低门槛,AI Development的时代也在渐行渐近。