【论文阅读笔记】Embedding Electronic Health Records for Clinical Information Retrieval

本文是2018.11.13发布于Arxiv上的一篇文章,作者Xing Wei, MSc1, Carsten Eickhoff, PhD。

  本文提出一种医学信息检索的方法。由于医学信息检索的标记数据较少而普通的医学文本数据较丰富,所以文章巧妙的采用了预训练文本和段落的方法。具体内容如下:

     第一步: 先用Word2Vec对生物医学文本,GloVe对维基百科文本进行word Embedding,然后将医学文本分词后根据上一步的词向量将文本转换为embedding Matrix ,通过CNN的卷积和池化获取到单纯使用用Word2Vec和GloV获取不到的文本段落语义信息,CNN网络的最后是预测标记,该预测任务只是为了获得文本或段落的embed vector,因此文中说这一步其实是作为最终的信息检索任务的代理(proxy)。

    第二步:将上一步获取到的文档向量替换信息检索模型DRMM中的词向量,这样检索信息中就包含了语义信息,检索更加精确。训练改进的DRMM模型使用的的采样样本是三元的,包含查询id,和查询相关的文档的id,和查询无关的文档id,损失函数使用hinge loss:

    第三步:在实际检索阶段,只需要分别将查询条件文本和文档库中的文档分别查询embed vector,用余弦相似性得出得分就可以检索出最相关文档。

本文的可取之处:

1、本文的获取文本向量的思想及训练DRMM的思想基本是借鉴了Skip-Gram模型。

2、在标注数据不足时如何使用迁移学习来完成最终的目的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
"学习指标来自教师:紧凑网络用于图像嵌入" 最近,研究人员提出了一种新的深度学习方法,通过从教师那里学习图像嵌入的紧凑网络。这种紧凑的网络结构具有很高的学习能力和计算效率,可以在训练过程中捕捉重要的图像特征。 所谓图像嵌入,是指将图像转换成低维度的特征向量。这个向量可以用来比较不同图像之间的相似性,或者作为输入传递给其他机器学习模型进行进一步的分析和处理。传统的图像嵌入方法通常基于手工设计的特征提取器,而这种新的方法则通过学习从教师模型中提取特征来实现。 在这种方法中,研究人员首先使用一个强大的教师模型对大量图像进行训练,以生成高质量的图像嵌入。然后,他们设计一个紧凑的网络结构,使用教师模型生成的嵌入向量作为目标。通过最小化教师模型与紧凑网络之间的距离,紧凑网络逐渐学会生成类似于教师模型的图像嵌入。 这种方法有几个优点。首先,它可以在不需要额外标记的情况下训练紧凑网络,因为教师模型已经提供了高质量的嵌入向量作为目标。其次,紧凑网络结构相对简单,计算效率高,可以轻松应用于大规模图像数据集。此外,通过从教师的知识中学习,紧凑网络可以获得更好的图像嵌入性能。 然而,这种方法也存在一些挑战。首先,选择一个合适的教师模型是关键。教师模型应该具有强大的特征提取能力,并且能够生成高质量的图像嵌入。其次,紧凑网络的结构设计也要考虑到充分利用教师模型的知识,并且要在保持计算效率的同时保持高质量的嵌入生成。 总之,学习从教师那里生成图像嵌入的紧凑网络是一个有前景的研究方向。通过从教师模型中学习,紧凑网络可以获得高质量的图像嵌入,为图像比较、分类和检索等任务提供有用的特征。未来的研究应该集中在提高教师模型的性能、设计更强大的紧凑网络结构,以及将这种方法应用于更广泛的领域。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值