任务要求:写一篇关于书生大模型全链路开源开放体系的笔记
通过这段时间的学习,原有对大模型的认识被大幅颠覆,认识到自己对大模型的概念已经大幅度落后于时代,以书生为代表的大模型的发展速度及周边生态应用已经远远超过我的想象。
遥想当年GPT第一次发布掀起第一次热潮时,也想方设法去试用过,也感叹于大预言模型对话的语法逻辑已经有真人的特征了。但是当时已经之后的几年,我对于大预言模型的认识也仅仅停留在对话,对大模型语言的应用也仅仅停留在搜索引擎的平替上,对大语言模型的发展也停留在不断增加参数量。
一直到了今年早些时候,接触到了一些智能体的应用,同时,由于工作的关系,需要利用大模型对一些细分垂直领域做一些应用研究。但是在研究过程中,由于目前国内互联网大厂的开源体系并不网上,大模型应用上的研究进行得并不顺利,所以对大模型的威力还是有所低估。在研究过程中,终于第一次和浦江实验室有了交流,一直到这次接到通知,有这么一个比较系统的训练营。我的整个思维才被彻底颠覆。
目前业界已经围绕着核心大模型形成了比较网上的生态系统,从数据——预训练——微调——部署——评测——应用已经形成了全链路的辅助工具,不但大大降低了大模型使用的门槛,还通过快捷的智能体搭建快速拓展大模型的应用领域和应用范围。这里需要大大地夸奖一下书生大模型的生态体系,有别于传统的互联网大厂,传统互联网大厂虽然说技术先进,但是大部分配套工具要么不开放,要么需要收取极高的费用,在目前大环境对数据安全越来越重视的情况下,其大模型技术的应用掣肘非常难以克服。相比之下,书生的大模型作为国产开源大模型,符合当前的国内国际大环境,而且全生态链的工具不但全面、便捷,而且全部开源免费。这就给类似我们这样的独立研究个体或者小心组织创造非常友好的应用环境。而且,对比了一下书生大模型和其他的互联网大厂的大模型,虽然模型参数量还有所不如,但是大模型的实际应用效果并没差多少。
在目前学习和应用过程中,如XTuner的大模型微调工具和以MindSearch为典型的大模型应用工具给我留下了深刻的印象。XTuner对算力的调度效率大大提高,我们内部较低的硬件配置都能运行模型微调的任务,避免重新购置GPU,尤其目前比较好的GPU购买还非常困难。MindSearch在我们看来更是颠覆了传统的搜索引擎,使得信息的检索能力无门槛大大提高,已经推荐给了周围的各个认识的朋友,几乎得到一致好评,原话是:“有了这个工具,谁还用百度去查啊”。
最后希望书生大模型体系能够发展得越来越好,让各行业各大大小小得组织和个人都能从大模型的发展中受益,最终实现大模型对全社会发展的深入赋能。