1.定义
微分是函数在某个变化过程中的改变量的线性主要部分。
若函数y=f(x)在点x处有导数f'(x)存在,则y因x的变化量△x所引起的改变量
可以表示为
,其中o(△x)是△x的高阶无穷小,即当△x趋于0时,o(△x)相对于△x趋于0的速度更快。因此,
微分dy可以近似地表示为
,它描述了函数值y随自变量x变化而变化的线性部分。
例如:正方形的面积公式为:
假设正方形的初始边长x=a,然后在a的基础上边长增加一个非常小的改变量△x,此时正方形的边长x=a+△x,正方形增加的面积:
由于△x非常小,所以△x^2可以看作是△x的高阶无穷小,即O(△x),所以:
等式两边同除以△x:
求极限:
极限存在,所以函数可导,即:
完整等式可表示为:
因此,微分dy可以近似地表示为
注意:△y是精确值,dy是近似值。
2.可微的充要条件
函数 f(x) 在点 x=a 处可微的充要条件是:
-
函数在点 x=a处连续:
-
函数在点 x=a 处左右导数存在且相等:
简单来说,就是可微的充要条件是函数 f(x) 在点 x=a 处可导。
3.微分公式与法则
根据微分定义
可知,求微分实际上就是求导数,所以微分公式同求导公式,详见导数章节,这里不再赘述。
例子
1.假设方程为
求dy。
解:
先求导数:
则:
4.微分的几何意义
假设一个可微函数y=f(x)的曲线,在x=x0处增加一个非常小的改变量△x,那么:
△y是函数增量的精确值,现在我们在x=x0处做函数的切线,根据微分定义可知:
f'(x)是切线的斜率,dy是△y的近似值,如上图所示,所以
所以微分提供了一种在局部范围内用直线近似曲线的方法,这对于理解和分析函数的行为非常有用。
例子
1.有一个半径为1cm的球,要在该球上镀0.01cm厚的铜,求镀铜的体积。
解:
1.体积公式:
2.根据题干可知,r0=1,△r=0.01,求出导数:
由微分公式:
5.微分中值定理
5.1 罗尔定理
如果函数 f(x)满足以下条件:
-
在闭区间 [a,b]上连续。
-
在开区间 (a,b)上可导。
-
在区间端点的函数值相等,即 f(a)=f(b)。
那么,在开区间 (a,b)内至少存在一点 c,使得:f′(c)=0
罗尔定理的几何意义是:如果函数 f(x) 在区间 [a,b]上的两个端点处的函数值相等,那么在区间 (a,b)内至少存在一点 c,使得该点处的切线是水平的(即导数为零)。
5.2 拉格朗日中值定理
如果函数 f(x)满足以下条件:
-
在闭区间 [a,b] 上连续。
-
在开区间 (a,b)上可导。
那么,在开区间 (a,b) 内至少存在一点 c,使得:
拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。
罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。
5.3 柯西中值定理
如果函数 f(x) 和 g(x) 满足以下条件:
-
在闭区间 [a,b]上连续。
-
在开区间 (a,b)上可导。
-
在开区间 (a,b) 内,g′(x)≠0。
那么,在开区间 (a,b) 内至少存在一点 c,使得:
柯西中值定理的几何意义是:在区间 [a,b] 上,函数 f(x)和 g(x) 的图像上至少存在一点 c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。
怎么理解柯西中值定理?
将f(x)和g(x)看作是参数方程:
a、b端点连线的斜率为:
根据拉格朗日中值定理可知,至少存在一点c,使得该点处的切线斜率等于区间端点连线的斜率,即:
5.4 洛必达法则
洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即 0/0 型)或分子和分母都趋向于无穷大(即 ∞/∞ 型)的情况。洛必达法则通过求导数来简化这些极限的计算。
设函数 f(x)和 g(x 满足以下条件:
-
在点 a 的某个去心邻域内可导,且 g′(x)≠0。
-
如果
存在(或为无穷大),那么:
6.函数的单调性
函数的单调性可以通过其导数来判定:
1.递增函数:
如果函数 f(x)在区间 (a,b)上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≥0,则函数 f(x) 在区间 (a,b)上是递增的。如果 f′(x)>0,则函数 f(x)在区间 (a,b) 上是严格递增的。
2.递减函数:
如果函数 f(x)在区间 (a,b) 上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≤0,则函数 f(x) 在区间 (a,b) 上是递减的。如果 f′(x)<0,则函数 f(x) 在区间 (a,b)上是严格递减的。
7.函数的凹凸性
7.1 函数凹凸性判定
函数的凹凸性可以通过其二阶导数来判定:
-
凹函数: 如果函数 f(x) 在区间 (a,b) 上二阶可导,并且对于区间 (a,b) 内的任意 x,总有 f′′(x)≥0,则函数 f(x) 在区间 (a,b) 上是凹的。
-
凸函数: 如果函数 f(x) 在区间 (a,b)上二阶可导,并且对于区间 (a,b) 内的任意 xx,总有 f′′(x)≤0,则函数 f(x)在区间 (a,b) 上是凸的。
7.2 拐点
拐点是函数图像从凹变凸或从凸变凹的点。对于函数 f(x),如果 f′′(x)=0 且 f′′(x) 在 x 的两侧符号相反,则 x 是函数的拐点。
8.极值
极值
是指函数在其定义域内的某个局部区间内的最大值或最小值。极值分为局部极大值和局部极小值。
如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≤f(c),则称 f(c)是函数 f(x) 在点 c 处的局部极大值。
如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≥f(c),则称 f(c) 是函数 f(x) 在点 c 处的局部极小值。
最值
最值是指函数在其整个定义域内的最大值和最小值。最值分为全局最大值和全局最小值。
如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≤f(c),则称 f(c)是函数 f(x)的全局最大值。
如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≥f(c),则称 f(c)是函数 f(x)的全局最小值。
8.1 极值的充分必要条件
必要条件
如果函数 f(x) 在点 x=c 处取得局部极大值或局部极小值,并且 f(x) 在 x=c处可导,则 f′(c)=0。换句话说,极值点必须是函数的驻点。
充分条件
一阶导数判定法
-
局部极大值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)>0,在c 的右侧 f′(x)<0,则 x=c 是局部极大值。
-
局部极小值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)<0,在c 的右侧 f′(x)>0,则 x=c 是局部极小值。
二阶导数判定法
-
局部极大值: 如果 f′(c)=0,并且 f′′(c)<0,则 x=c 是局部极大值。
-
局部极小值: 如果 f′(c)=0,并且 f′′(c)>0,则 x=c 是局部极小值。