人工智能的高数基础3 微分

1.定义

微分是函数在某个变化过程中的改变量的线性主要部分。

若函数y=f(x)在点x处有导数f'(x)存在,则y因x的变化量△x所引起的改变量

可以表示为

,其中o(△x)是△x的高阶无穷小,即当△x趋于0时,o(△x)相对于△x趋于0的速度更快。因此,

微分dy可以近似地表示为

,它描述了函数值y随自变量x变化而变化的线性部分。‌

例如:正方形的面积公式为:

假设正方形的初始边长x=a,然后在a的基础上边长增加一个非常小的改变量△x,此时正方形的边长x=a+△x,正方形增加的面积:

由于△x非常小,所以△x^2可以看作是△x的高阶无穷小,即O(△x),所以:

等式两边同除以△x:

求极限:

极限存在,所以函数可导,即:

完整等式可表示为:

因此,微分dy可以近似地表示为

注意:△y是精确值,dy是近似值。

2.可微的充要条件

函数 f(x) 在点 x=a 处可微的充要条件是:

  1. 函数在点 x=a处连续:

  2. 函数在点 x=a 处左右导数存在且相等:

简单来说,就是可微的充要条件是函数 f(x) 在点 x=a 处可导。

3.微分公式与法则

根据微分定义

可知,求微分实际上就是求导数,所以微分公式同求导公式,详见导数章节,这里不再赘述。

例子

1.假设方程为

求dy。

解:

先求导数:

                        y'=(e^{1-3x})'cosx + e^{1-3x}(cosx)'=e^{1-3x}(1-3x)'-e^{1-3x}sinx=-3e^{1-3x}-e^{1-3x}sinx=-e^{1-3x}(3+sinx)

则:

                                ​​​​​​​        ​​​​​​​        dy=y'dx=-e^{1-3x}(3+sinx)dx

4.微分的几何意义

假设一个可微函数y=f(x)的曲线,在x=x0处增加一个非常小的改变量△x,那么:

△y是函数增量的精确值,现在我们在x=x0处做函数的切线,根据微分定义可知:

f'(x)是切线的斜率,dy是△y的近似值,如上图所示,所以

所以微分提供了一种在局部范围内用直线近似曲线的方法,这对于理解和分析函数的行为非常有用。

例子

1.有一个半径为1cm的球,要在该球上镀0.01cm厚的铜,求镀铜的体积。

解:

1.体积公式:

2.根据题干可知,r0=1,△r=0.01,求出导数:

由微分公式:

5.微分中值定理

5.1 罗尔定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b]上连续。

  2. 在开区间 (a,b)上可导。

  3. 在区间端点的函数值相等,即 f(a)=f(b)。

那么,在开区间 (a,b)内至少存在一点 c,使得:f′(c)=0

罗尔定理的几何意义是:如果函数 f(x) 在区间 [a,b]上的两个端点处的函数值相等,那么在区间 (a,b)内至少存在一点 c,使得该点处的切线是水平的(即导数为零)。

5.2 拉格朗日中值定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b] 上连续。

  2. 在开区间 (a,b)上可导。

那么,在开区间 (a,b) 内至少存在一点 c,使得:

拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。

罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。

5.3 柯西中值定理

如果函数 f(x) 和 g(x) 满足以下条件:

  1. 在闭区间 [a,b]上连续。

  2. 在开区间 (a,b)上可导。

  3. 在开区间 (a,b) 内,g′(x)≠0。

那么,在开区间 (a,b) 内至少存在一点 c,使得:

柯西中值定理的几何意义是:在区间 [a,b] 上,函数 f(x)和 g(x) 的图像上至少存在一点 c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。

怎么理解柯西中值定理?

将f(x)和g(x)看作是参数方程:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \begin{cases}x=f(t)\\ y=g(t)\end{cases}

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​                ​​​​​​​​​​​​​​\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{g'(t)}{f'(t)}

a、b端点连线的斜率为:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \dfrac{g(b)-g(a)}{f(b)-f(a)}

根据拉格朗日中值定理可知,至少存在一点c,使得该点处的切线斜率等于区间端点连线的斜率,即:        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \dfrac{g'(t)}{f'(t)}=\dfrac{g(b)-g(a)}{f(b)-f(a)}

5.4 洛必达法则

洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即 0/0 型)或分子和分母都趋向于无穷大(即 ∞/∞ 型)的情况。洛必达法则通过求导数来简化这些极限的计算。

设函数 f(x)和 g(x 满足以下条件:

  1. 在点 a 的某个去心邻域内可导,且 g′(x)≠0。

  2. 如果

存在(或为无穷大),那么:

6.函数的单调性

函数的单调性可以通过其导数来判定:

1.递增函数:

        如果函数 f(x)在区间 (a,b)上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≥0,则函数 f(x) 在区间 (a,b)上是递增的。如果 f′(x)>0,则函数 f(x)在区间 (a,b) 上是严格递增的。

2.递减函数:

        如果函数 f(x)在区间 (a,b) 上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≤0,则函数 f(x) 在区间 (a,b) 上是递减的。如果 f′(x)<0,则函数 f(x) 在区间 (a,b)上是严格递减的。

7.函数的凹凸性

7.1 函数凹凸性判定

函数的凹凸性可以通过其二阶导数来判定:

  1. 凹函数: 如果函数 f(x) 在区间 (a,b) 上二阶可导,并且对于区间 (a,b) 内的任意 x,总有 f′′(x)≥0,则函数 f(x) 在区间 (a,b) 上是凹的。

  2. 凸函数: 如果函数 f(x) 在区间 (a,b)上二阶可导,并且对于区间 (a,b) 内的任意 xx,总有 f′′(x)≤0,则函数 f(x)在区间 (a,b) 上是凸的。

7.2 拐点

拐点是函数图像从凹变凸或从凸变凹的点。对于函数 f(x),如果 f′′(x)=0 且 f′′(x) 在 x 的两侧符号相反,则 x 是函数的拐点。

8.极值

极值

是指函数在其定义域内的某个局部区间内的最大值或最小值。极值分为局部极大值和局部极小值。

如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≤f(c),则称 f(c)是函数 f(x) 在点 c 处的局部极大值。

如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≥f(c),则称 f(c) 是函数 f(x) 在点 c 处的局部极小值。

最值

最值是指函数在其整个定义域内的最大值和最小值。最值分为全局最大值和全局最小值。

如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≤f(c),则称 f(c)是函数 f(x)的全局最大值。

如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≥f(c),则称 f(c)是函数 f(x)的全局最小值。

8.1 极值的充分必要条件

必要条件

如果函数 f(x) 在点 x=c 处取得局部极大值或局部极小值,并且 f(x) 在 x=c处可导,则 f′(c)=0。换句话说,极值点必须是函数的驻点。

充分条件

一阶导数判定法

  1. 局部极大值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)>0,在c 的右侧 f′(x)<0,则 x=c 是局部极大值。

  2. 局部极小值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)<0,在c 的右侧 f′(x)>0,则 x=c 是局部极小值。

二阶导数判定法

  1. 局部极大值: 如果 f′(c)=0,并且 f′′(c)<0,则 x=c 是局部极大值。

  2. 局部极小值: 如果 f′(c)=0,并且 f′′(c)>0,则 x=c 是局部极小值。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值