行人重识别(ReID) ——数据集描述 Market-1501

dataset

数据集简介

  Market-1501 数据集在清华大学校园中采集,夏天拍摄,在 2015 年构建并公开。它包括由6个摄像头(其中5个高清摄像头和1个低清摄像头)拍摄到的 1501 个行人、32668 个检测到的行人矩形框。每个行人至少由2个摄像头捕获到,并且在一个摄像头中可能具有多张图像。训练集有 751 人,包含 12,936 张图像,平均每个人有 17.2 张训练数据;测试集有 750 人,包含 19,732 张图像,平均每个人有 26.3 张测试数据。3368 张查询图像的行人检测矩形框是人工绘制的,而 gallery 中的行人检测矩形框则是使用DPM检测器检测得到的。该数据集提供的固定数量的训练集和测试集均可以在single-shot或multi-shot测试设置下使用。

目录结构

Market-1501
  ├── bounding_box_test
       ├── 0000_c1s1_000151_01.jpg
       ├── 0000_c1s1_000376_03.jpg
       ├── 0000_c1s1_001051_02.jpg
  ├── bounding_box_train
       ├── 0002_c1s1_000451_03.jpg
       ├── 0002_c1s1_000551_01.jpg
       ├── 0002_c1s1_000801_01.jpg
  ├── gt_bbox
       ├── 0001_c1s1_001051_00.jpg
       ├── 0001_c1s1_009376_00.jpg
       ├── 0001_c2s1_001976_00.jpg
  ├── gt_query
       ├── 0001_c1s1_001051_00_good.mat
       ├── 0001_c1s1_001051_00_junk.mat
  ├── query
       ├── 0001_c1s1_001051_00.jpg
       ├── 0001_c2s1_000301_00.jpg
       ├── 0001_c3s1_000551_00.jpg
  └── readme.txt

目录介绍

1) “bounding_box_test”——用于测试集的 750 人,包含 19,732 张图像,前缀为 0000 表示在提取这 750 人的过程中DPM检测错的图(可能与query是同一个人),-1 表示检测出来其他人的图(不在这 750 人中)
2) “bounding_box_train”——用于训练集的 751 人,包含 12,936 张图像
3) “query”——为 750 人在每个摄像头中随机选择一张图像作为query,因此一个人的query最多有 6 个,共有 3,368 张图像
4) “gt_query”——matlab格式,用于判断一个query的哪些图片是好的匹配(同一个人不同摄像头的图像)和不好的匹配(同一个人同一个摄像头的图像或非同一个人的图像)
5) “gt_bbox”——手工标注的bounding box,用于判断DPM检测的bounding box是不是一个好的box

命名规则

以 0001_c1s1_000151_01.jpg 为例
1) 0001 表示每个人的标签编号,从0001到1501;
2) c1 表示第一个摄像头(camera1),共有6个摄像头;
3) s1 表示第一个录像片段(sequece1),每个摄像机都有数个录像段;
4) 000151 表示 c1s1 的第000151帧图片,视频帧率25fps;
5) 01 表示 c1s1_001051 这一帧上的第1个检测框,由于采用DPM检测器,对于每一帧上的行人可能会框出好几个bbox。00 表示手工标注框

测试协议

Cumulative Matching Characteristics (CMC) curves 是目前行人重识别领域最流行的性能评估方法。考虑一个简单的 single-gallery-shot 情形,每个数据集中的ID(gallery ID)只有一个实例. 对于每一次的识别(query), 算法将根据要查询的图像(query) 到所有gallery samples的距离从小到大排序,CMC top-k accuracy 计算如下:

Acc_k = 1, if top-k ranked gallery samples contain query identity
Acc_k = 0, otherwise

这是一个 shifted step function, 最终的CMC 曲线(curve) 通过对所有queries的shifted step functions取平均得到。尽管在 single-gallery-shot 情形下,CMC 有很明确的定义,但是在 multi-gallery-shot 情形下,它的定义并不明确,因为每个gallery identity 可能存在多个instances.

Market-1501中 Query 和 gallery 集可能来自相同的摄像头视角,但是对于每个query identity, 他/她的来自同一个摄像头的 gallery samples 会被排除掉。对于每个 gallery identity,他们不会只随机采样一个instance. 这意味着在计算CMC时, query 将总是匹配 gallery 中“最简单”的正样本,而不关注其他更难识别的正样本。bounding_box_test 文件夹是 gallery 样本,bounding_box_train 文件夹是 train 样本,query 文件夹是 query 样本

由上面可以看出,在 multi-gallery-shot 情形下,CMC评估具有缺陷。因此,也使用 mAP(mean average precsion)作为评估指标。mAP可认为是PR曲线下的面积,即平均的查准率。

下载地址

  1. Google Drive
  2. Baidu Disk

State of the art

Citation

If you use this dataset, please kindly cite this paper:

@inproceedings{zheng2015scalable,
  title={Scalable Person Re-identification: A Benchmark},
  author={Zheng, Liang and Shen, Liyue and Tian, Lu and Wang, Shengjin and Wang, Jingdong and Tian, Qi},
  booktitle={Computer Vision, IEEE International Conference on},
  year={2015}
}

参考文献

  • Zheng, Liang, et al. “Scalable Person Re-identification: A Benchmark.” IEEE International Conference on Computer Vision IEEE Computer Society, 2015:1116-1124.
  • Liang Zheng
  • Person re-ID
### 回答1: Market-1501 数据集是一个广泛用于人物重识别研究的数据集,包括行人图像和相应的标注信息。该数据集包括来自 6 个不同摄像头的 15,151 个行人,共 32,668 个标注边界框。每个行人都有多个摄像头的图像,这些图像通常被划分为训练、验证和测试三个集合。 Market-1501 数据集是目前最受欢迎的人物重识别数据集之一,已经被广泛用于行人检测、行人跟踪、行人重识别等研究领域。 ### 回答2: Market-1501 数据集是一个用于行人重识别(Person Re-identification,简称ReID)研究的公开数据集。该数据集由来自市场环境的行人图像组成,包含超过1501个不同的行人身份。 这个数据集的主要特点是其大规模和多样性。Market-1501数据集包含超过32,000个不同的行人图像,并且这些图像是在不同的天气条件、不同的场景和不同的时间拍摄的。这使得这个数据集可以更好地模拟真实世界中的行人重识别问题。 在Market-1501数据集中,每个行人身份都由一个唯一的ID表示,并且每个身份都包含多个行人图像。这样的设计使得研究者可以将重识别问题看作是一个图像检索问题。即给定一张行人图像,从数据集中找到其对应的身份。 这个数据集中的行人图像经过人工标注,每张图像都有对应的行人边界框和行人ID。这使得研究者可以使用这个数据集进行行人重识别算法的训练和评估。 通过使用Market-1501数据集进行实验,研究者可以评估不同的行人重识别算法在大规模和多样性数据集上的性能。此外,研究者还可以对算法进行比较和改进,从而推动行人重识别技术的发展。 总而言之,Market-1501数据集是一个用于行人重识别研究的重要资源,它具有大规模和多样性的特点,可以帮助研究者更好地理解和解决行人重识别问题。 ### 回答3: Market-1501数据集是一个用于行人再识别问题的标准数据集。该数据集包含来自超过一个月的多个摄像头的行人图像。数据集中总共有超过1500个行人身份,其中有超过32000张行人图像。这些图像分为训练集和测试集,其中训练集包含标注的身份和姿势信息,而测试集只有行人图像。 Market-1501数据集中的行人图像具有不同的特点和变化,比如行人的姿势、背景、衣着和光照等。这使得数据集更加真实和具有挑战性,可以用于评估行人再识别算法的鲁棒性和准确性。数据集中的行人图像来自现实生活中各种场景,如商场、学校、办公室等,使得数据集更贴近实际应用。 Market-1501数据集不仅提供了行人图像,还提供了身份标注、姿势标注和行人跟踪信息。这使得研究人员可以进行各种实验和深入分析。此外,数据集还包含了一些额外的信息,如摄像头的视野范围、摄像头的数量和位置等,这些信息可以用于辅助算法的研究和设计。 Market-1501数据集已经被广泛应用于行人再识别算法的评估和比较。研究人员可以使用该数据集来测试他们的算法在复杂场景下的表现,并与其他算法进行比较。数据集的丰富性和真实性使得研究人员能够更好地理解和解决行人再识别问题,并推动该领域的发展。 总之,Market-1501数据集是一个用于行人再识别问题的重要标准数据集,它提供了丰富的行人图像和相关信息,为研究人员提供了评估和分析算法的基础。通过使用该数据集,研究人员可以更好地理解和解决行人再识别问题,推动该领域的发展。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gmHappy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值