Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling 之再阅读

CVPR2016

Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale
Dependent Pooling and Cascaded Rejection Classifiers

本文对基于CNN的物体检测提出了两个技巧来提高速度和精度:
1) scale-dependent pooling (SDP) 就是根据候选区域尺寸大小来提取不同CNN卷积层特征,对小的候选区域,选择靠前的CNN特征,对大的候选区域,选择靠后的CNN卷积特征。类似 Hyper-columns
2) cascaded rejection classifiers (CRC) 就是使用级联分类器快速提出不包含物体的候选区域。

整个系统框架如下图所示:

这里写图片描述

3 Scale-Dependent Pooling

这里写图片描述
这里写图片描述

4 Cascaded Rejection Classifiers

这里写图片描述

识别率

这里写图片描述

模块时间分析

这里写图片描述

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值