Efficient Coarse-to-Fine PatchMatch for Large Displacement Optical Flow

本文介绍了一种快速计算大位移光流的算法,该算法能够在tinystructureswithlargemotions情况下减少误差。通过多尺度框架,在不同尺度上提取信息,并从顶层开始建立种子点的对应关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CVPR 2016
本文提出了一个快速计算大位移光流的算法。
一般的算法在 tiny structures with large motions 情况下容易出现误差。

这里写图片描述

算法采用多尺度框架,不同尺度可以提取出不同的信息。

这里写图片描述

这里写图片描述
两幅图像 I1,I2,从I1里提取一系列种子点。网格提取,每个d*d区域只有一个种子点。
然后从顶层开始,建立种子点的对应关系。然后根据上层的对应关系计算下一层的对应关系。

这里写图片描述

这里写图片描述

这里写图片描述

<think>好的,我需要回答用户关于“coarse-to-fine 方法在计算光流中的应用及实现”的问题。首先,我应该明确什么是coarse-to-fine方法,以及它在光流计算中的具体应用。根据用户提供的引用[^1],里面提到多尺度策略,也就是金字塔结构,用于处理大位移问题。这应该是coarse-to-fine方法的核心。 接下来,我需要解释coarse-to-fine方法的基本原理。可能涉及图像金字塔的构建,从低分辨率(粗尺度)到高分辨率(细尺度)逐步优化光流。引用中提到的非线性公式改变光流约束方程,可能需要用线性化和迭代方法处理每个尺度,这可能涉及到如Horn-Schunck方法的扩展。 然后,实现步骤可能需要分点说明:图像金字塔的创建、光流初始估计、迭代细化、运动增量计算等。每个步骤需要结合用户提供的引用内容,特别是多尺度策略和金字塔结构的作用。 用户还提到了性能优化和应用场景,可能需要在相关问题中提及,比如如何处理大位移、优化收敛速度等。需要确保回答结构清晰,分步骤解释,并引用提供的资料。 另外,注意使用正确的中文表达,数学公式需要用$$...$$和$...$格式。例如,光流约束方程可能需要用LaTeX表示,如$I_x u + I_y v + I_t = 0$。还有金字塔层间的运动传播公式,如$u^{k} = 2(u^{k-1} + \Delta u^{k})$。 需要检查是否有遗漏的关键点,比如非线性方程的处理、迭代方法的应用,以及金字塔结构如何逐步完善解决方案。同时,确保回答中的技术术语准确,比如多尺度策略、运动增量、线性化等。 最后,生成的相关问题要围绕实现细节、优化方法和应用场景展开,帮助用户进一步探索。例如,如何构建图像金字塔,或coarse-to-fine方法的优缺点。 总结思考步骤:定义coarse-to-fine方法,解释其在光流中的必要性,详细步骤分点说明,结合引用内容,数学公式正确使用,生成相关问题。</think>### Coarse-to-Fine光流计算方法实现 **1. 基本原理** Coarse-to-Fine方法通过多尺度图像金字塔(从低分辨率到高分辨率)逐步优化光流,解决大位移问题。其核心思想是:在粗尺度上捕捉大范围运动,再在细尺度上逐步修正细节。 **2. 实现步骤** **(1) 构建图像金字塔** - 对输入图像$I_1, I_2$进行降采样,生成多尺度图像序列: $$I^k = \text{downsample}(I^{k-1})$$ 其中$k=0$为原始分辨率,$k=K$为最粗尺度。 **(2) 光流初始化** 在最粗尺度($k=K$)初始化光流场$(u^K, v^K)$,通常设为零或简单运动模型。 **(3) 迭代细化过程** 从粗到细逐层优化: 1. **上采样传播**:将上一层的粗尺度光流$u^{k}, v^{k}$上采样到下一层: $$u^{k-1} = 2 \cdot \text{resize}(u^{k})$$ $$v^{k-1} = 2 \cdot \text{resize}(v^{k})$$ 2. **非线性约束方程**:基于光流约束方程改进运动估计: $$I_x(u + \Delta u) + I_y(v + \Delta v) + I_t = 0$$ 其中$\Delta u, \Delta v$为当前尺度的运动增量。 3. **线性化与迭代**:通过泰勒展开线性化方程,用迭代法(如Gauss-Newton)求解增量。 4. **增量叠加**: $$u^{k-1} \leftarrow u^{k-1} + \Delta u$$ $$v^{k-1} \leftarrow v^{k-1} + \Delta v$$ **(4) 最终优化** 在最细尺度($k=0$)输出光流场$(u^0, v^0)$。 **3. 关键技术点** - **金字塔层数**:通常3-5层,降采样因子为0.5 - **运动增量计算**:使用加权最小二乘法优化能量函数,如: $$E = \sum (I_x\Delta u + I_y\Delta v + I_t)^2 + \lambda(|\nabla \Delta u|^2 + |\nabla \Delta v|^2)$$ - **变形补偿**:在每层迭代时对图像进行变形(warping)以提高精度 **伪代码示例** ```python def coarse_to_fine_flow(img1, img2, max_level=4): pyramid1 = build_gaussian_pyramid(img1, max_level) pyramid2 = build_gaussian_pyramid(img2, max_level) flow = initialize_zero_flow(pyramid1[-1].shape) for level in reversed(range(max_level)): scaled_img1 = pyramid1[level] scaled_img2 = warp_image(pyramid2[level], flow) for iter in range(max_iterations): delta_flow = compute_flow_increment(scaled_img1, scaled_img2) flow = refine_flow(flow, delta_flow) if level > 0: flow = upsample_flow(flow, pyramid1[level-1].shape) return flow ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值