自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 论坛 (1)

原创 CNN网络结构 - Refining Architectures of Deep Convolutional Neural Networks

CVPR 2016 Refining Architectures of Deep Convolutional Neural Networks本文的出发点是回答下面的问题: is the selected CNN optimal for the dataset in terms of accuracy and model size? 针对一个问题,我们使用CNN模型,针对现有的数据库,我们选择的C

2016-10-28 15:58:29 1346 2

原创 噪声数据-The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition

ECCV 2016 The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition当前 fine-grained recognition的主流方法分两步:1)训练数据的收集和标定,2)模型的训练。本文提出的使用从网络上搜索的含有噪声的数据进行训练,得到很好的效果。3 Noisy Fine-Grained Data

2016-10-24 16:44:35 2014

原创 行人检索 - Embedding Deep Metric for Person Re-identification

ECCV 2016code: http://www.cbsr.ia.ac.cn/users/hailinshi/Embedding Deep Metric for Person Re-identification: A Study Against Large Variations针对行人检索问题,这里主要做了两个方向的工作:1)针对大家使用的hard negative mining 策略,我们提出

2016-10-21 09:59:01 2218 2

原创 视频目标检测 - Object Detection from Video Tubelets with Convolutional Neural Networks

CVPR2016code: https://github.com/myfavouritekk/vdetlib基于静态图像的CNN目标检测问题已经很多人研究。而基于视频的CNN目标检测问题则是刚刚起步。主要问题是目标检测和跟踪的有效结合。针对视频中的目标,单独的检测和单独的跟踪都会有波动。我们的视频目标检测框架图: 主要包括两个模块: 1 a spatio-temporal tubelet p

2016-10-20 15:28:01 12208 4

原创 行人检索 - Top-push Video-based Person Re-identification

CVPR2016code: http://isee.sysu.edu.cn/resource本文针对 Person Re-identification 问题 做了两个方面的工作:一个是基于视频信息来做,主要是提取更多时空的信息来解决遮挡和复杂的背景干扰。第二是引入Top-push优化手段 来 增大类间差异,缩小类内差异。3 Approach 我们使用 HOG3D 描述子 来提取 视频中的时空信息

2016-10-20 09:14:22 2648

原创 去雾 - Non-Local Image Dehazing

CVPR2016Non-Local Image Dehazing code: http://www.eng.tau.ac.il/~berman/NonLocalDehazing/简单明了的图像去雾算法。首先一幅彩色图像的RGB颜色值可以通过几百个RGB值来表示,类似图像压缩中的调色板。一幅没有雾的彩色图像近似RGB值在 RGB空间分布为一个 cluster,但是在有雾的彩色图像这些RGB值在RGB

2016-10-18 15:43:52 7363 1

原创 大裕量Softmax 损失函数--Large-Margin Softmax Loss for Convolutional Neural Networks

ICML2016 Large-Margin Softmax Loss for Convolutional Neural Networks本文针对CNN网络中的 Softmax Loss 做出改进,使之成为 Large-Margin Softmax Loss 标准的CNN可以被看做由 Softmax Loss 监督的卷积特征学习机器。当前的 Softmax Loss 没有显式的强调 intra-

2016-10-17 16:10:19 4804

原创 人脸识别 - A Discriminative Feature Learning Approach for Deep Face Recognition

A Discriminative Feature Learning Approach for Deep Face Recognition ECCV 2016code: https://github.com/ydwen/caffe-face本文针对人脸识别问题,针对 loss function提出了加入 center loss,使得学习到地 深度特征更加 discriminative 。以前CNN

2016-10-17 10:10:37 6842 6

原创 图像分割“Fully Convolutional Networks for Semantic Segmentation”

文章使用了全卷积的网络,接受任意大小的输入,生成对应大小的输出。将 AlexNet,VggNet,GoogleNet转换为全卷积网络,并定义了结合深层和浅层信息的结构用于分割。全卷积网络结构 卷积的输入和输出关系为: 对于AlexNet来说,全连接层维度固定,不包含空间信息,但全连接可以看作是与覆盖全区域的核的卷积,这样就会生成特征图,如下图所示。 网络输出尺寸是10*10的特征图,

2016-10-12 17:05:58 1138

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除