上篇文章已经全局初步介绍了SAM和其功能,本篇作为进阶使用。点击订阅专栏查看专栏列表和对应知识点,本文为seg SAM系列文章,在持续更新。
文章目录
- 0.前言
- 1.SAM原论文
- 2.代码实战
- 3.SAM相关论文
-
- 🍏Segmenting anything also Detect anything
- 🍐Segment Everything Everywhere All at Once
- 🍊SegGPT: Segmenting Everything In Context
- 🍋Anything-3D: Towards Single-view Anything Reconstruction in the Wild
- 🍌SAM Fails to Segment Anything? -SAM-Adapter: Adapting SAM in Underperformed Scenes: Camouflage, Shadow, and More
- 🍒Segment Anything Is Not Always Perfect: An Investigation of SAM on Different Real-world Applications
- ——————————————医疗影像分割领域:————————————
- 🍉SAMM (SEGMENT ANY MEDICAL MODEL): A 3D SLICER INTEGRATION TO SAM
- 🍇SAM.MD: Zero-shot medical image segmentation capabilities of the Segment Anything Model
- 🍓Accuracy of Segment-Anything Model (SAM) in Medical Image Segmentation Tasks
- 🍈When SAM Meets Medical Images: An Investigation of Segment Anything Model (SAM) on Multi-phase Liver Tumor Segmentation
- 🥭Segment Anything Model (SAM) for Digital Pathology: Assess Zero-shot Segmentation on Whole Slide Imaging
- 🍈Can SAM Segment Polyps?
0.前言
假如,我们有一个缺陷检测的任务(😭真的有)
一般方法分两种
方法 | 问题 |
---|---|
图像处理+机器学习:图像采集,图像预处理,图像分析,缺陷检测,缺陷分类。图像分析一般包括图像降维,特征提取。基于形状,颜色,纹理,使用机器学习方法,例如贝叶斯,SVM,决策树,EM等进行分类 | 1️⃣ 耦合,图像采集过程依赖合适的稳定的光照环境,合适的工业相机参数,严重依赖图像质量。2️⃣只能解决已知缺陷特定缺陷,对于生产线上的各种未知可能不能提供任何预测。 |