SAM的训练过程笔记

本文介绍了SAM模型在训练过程中的关键组件,如有效分割掩码生成、多候选掩码处理、预训练任务以及数据引擎的三个阶段——辅助手动注释、半自动和全自动,强调了质量控制方法,如IoU预测和非极大值抑制,以生成大规模高质量的分割数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  •  在SAM(Segment Anything Model)的训练过程中,输出结果主要包括以下几个方面:

    • 有效的分割掩码(Valid Segmentation Masks):SAM被设计为一个可提示的分割模型,它能够根据输入的提示(prompts)生成对应的分割掩码。这些掩码代表了图像中被提示的对象或区域。
    • 多个候选掩码(Multiple Candidate Masks):为了处理可能存在的歧义,SAM可以输出多个候选掩码,这些掩码都是对同一提示的合理响应。
    • 掩码质量预测(Mask Quality Predictions):SAM还能够预测每个输出掩码的质量,这通常通过IoU(Intersection over Union)分数来衡量,IoU分数越高,表示掩码与真实对象的重叠度越高,质量越好。

SAM的训练涉及到以下几个方面:

  • 预训练任务(Pre-training Task):SAM的预训练任务是可提示的分割任务,即模型需要根据输入的提示生成有效的分割掩码。这个任务通过模拟每个训练样本的提示序列(例如点、框、掩码)并将模型的掩码预测与真实掩码(ground truth)进行比较来实现。这种方法类似于交互式分割,但目标是始终预测任何提示的有效掩码,即使提示不明确。
  • 数据引擎(Data Engine):SAM的训练还依赖于一个数据引擎,这是一个迭代的过程,其中模型被用来辅助数据收集,而新收集的数据又用来改进模型。数据引擎有三个阶段:辅助手动注释阶段、半自动阶段和全自动阶段。在这些阶段中,模型的性能和生成的数据质量不断迭代和提升。
  • 质量控制(Quality Control):为了确保生成的数据质量,SAM在全自动阶段使用了模糊感知模型和IoU预测模块来选择置信度高的掩码。此外,还应用了非极大值抑制(NMS)来过滤重复的掩码,并对小规格掩码进行后处理,以进一步提高质量。

 

数据引擎(Data Engine)是SAM(Segment Anything Model)训练过程中的一个关键组成部分,它负责收集和生成用于训练模型的大规模分割掩码数据集。数据引擎的工作分为三个阶段:辅助手动注释阶段、半自动阶段和全自动阶段。

  1. 辅助手动注释阶段(Assisted-manual stage):

    • 在这个阶段,专业的标注员使用基于浏览器的交互式分割工具,通过点击图像中的前景和背景点来标注对象。
    • 标注员可以使用像素级的“画笔”和“橡皮擦”工具来改进掩码的质量。
    • SAM在这个过程中提供实时的模型辅助,使用预先计算的图像嵌入来实现交互式体验。
    • 初始阶段,SAM使用公共分割数据集进行训练。随后,仅使用新标注的掩码对SAM进行再训练。
    • 随着模型的改进,每个掩码的平均标注时间从34秒减少到14秒,每张图像的平均掩码数量从20个增加到44个。
  2. 半自动阶段(Semi-automatic stage):

    • 这个阶段的目标是增加掩码的多样性,以提高模型对任何事物的分割能力。
    • 首先,自动检测出高置信度的掩码,然后向标注员展示预填了这些掩码的图像,并要求他们标注剩余未标注的对象。
    • 为了获取高置信度的掩码,训练了一个边界框检测器,使用通用的“对象”类别在所有第一阶段的掩码上进行训练。
    • 在这个阶段,总共收集了590万个掩码,每个掩码的平均标注时间回升到34秒。
  3. 全自动阶段(Fully automatic stage):

    • 在最后阶段,完全自动化地生成掩码,这是由于模型的两个主要改进:已经收集了足够的掩码来大幅改进模型,包括前一阶段的多样化掩码;开发了模糊感知模型,即使在模糊情况下也能预测有效的掩码。
    • 使用一个32x32的规则网格提示模型,并为每个点预测一组可能对应于有效对象的掩码。
    • 利用模型的IoU预测模块选择高置信度的掩码,并识别和选择稳定的掩码(如果在0.5-δ和0.5+δ处对概率图进行阈值处理的结果是相似的掩码,则认为掩码是稳定的)。
    • 应用非极大值抑制(NMS)来过滤重复的掩码,并处理多个重叠的放大图像裁剪以提高小尺寸掩码的质量。
    • 对数据集中的所有1100万张图像进行了全自动的掩码生成,总共产生了11亿个高质量的掩码。
### 关于HQ-SAM模型训练权重下载获取 HQ-SAM模型旨在提升原始SAM模型的分割质量,同时保持其零样本能力。为了达到这一目标,HQ-SAM采用了轻量化的设计思路,仅引入了少量额外参数——高质量输出Token和全局-局部特征融合机制[^2]。 对于HQ-SAM模型训练权重的下载与获取: 1. **官方发布渠道** - 如果有官方发布的预训练权重文件链接,则可以直接从项目主页或论文附带材料处找到并下载对应的权重文件。 2. **GitHub仓库** - 多数情况下,研究者会在GitHub上维护项目的开源代码库。可以在该项目的README.md文档中寻找有关如何安装依赖项以及加载预训练模型的具体指导说明。通常也会提供指向Google Drive或其他云存储服务上的直链用于下载权重文件[^3]。 3. **学术交流平台** - 对于一些较新发表的研究成果,作者可能会将其上传至像Hugging Face这样的社区平台上共享给其他研究人员使用。这类网站不仅提供了便捷的方式访问各种AI模型及其配套资源,还允许用户查看详细的API文档和支持论坛等内容。 4. **联系作者团队** - 若上述途径均未能满足需求,还可以尝试直接联系论文的第一作者或者通讯作者请求帮助。大多数学者都愿意分享自己的研究成果,并给予必要的技术支持。 ```bash # 假设已知github地址为例展示克隆仓库命令 git clone https://github.com/example/hq-sam.git cd hq-sam pip install -r requirements.txt # 安装所需环境 python download_weights.py # 运行脚本下载权重(假设存在此功能) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值