CP.21特征值和特征向量

矩阵 A A A的特征向量 x x x和特征值 λ \lambda λ服从关系 A x = λ x Ax=\lambda x Ax=λx,其实质是向量 x x x A A A的作用线进行了线性变换,变换后 x x x仍然与原来同方向,只是拉伸或缩短,拉伸缩短的长度取决于特征值 λ \lambda λ
如果0是矩阵的特征值,则 A x = 0 x = 0 Ax=0x=0 Ax=0x=0,0特征值对应的特征向量就是 A A A零空间内的向量,如果 A A A是奇异矩阵(不可逆),那么方程 A x = 0 Ax=0 Ax=0肯定是有个0解的。

例: P m P_m Pm是投影矩阵,将向量 b b b投影到平面 x x x内,表达式为 P m b = x P_mb=x Pmb=x,因此特征向量 x x x对应的特征值是 1 1 1,另一个无关特征向量可以选择与平面 x x x垂直的向量 y y y,则有 P m y = 0 P_my=0 Pmy=0,特征向量 y y y的特征值为 0 0 0,矩阵 P m P_m Pm的所有特征向量张成了整个特征向量空间。

:矩阵 A = [ 0 1 1 0 ] A=\begin{bmatrix}0&1\\1&0\end{bmatrix} A=[0110],具有特征向量 x 1 = [ 1 1 ] x_1=\begin{bmatrix}1\\1\end{bmatrix} x1=[11],特征向量对应的特征值是 1 1 1;另一个特征向量为 x 2 = [ 1 − 1 ] x_2=\begin{bmatrix}1\\-1\end{bmatrix} x2=[11],特征向量对应的特征值是 − 1 -1 1。这两个特征向量为正交关系,其线性组合可以张成整个特征向量空间,注意,对称矩阵的特征向量是两两正交的。

A x = λ x Ax=\lambda x Ax=λx可以推出 ( A − λ I ) x = 0 (A-\lambda I)x=0 (AλI)x=0,求解矩阵特征值和特征向量的问题,转化成了求矩阵 A − λ I A-\lambda I AλI的零空间问题,要有解就必须满足 r a n k ( A − λ I ) < n rank(A-\lambda I)<n rank(AλI)<n即要求其行列式等于零。例如矩阵 A = [ 3 1 1 3 ] , d e t ( A − λ I ) = ∣ 3 − λ 1 1 3 − λ ∣ = λ 2 − 6 λ + 8 A=\begin{bmatrix}3&1\\1&3\end{bmatrix},det(A-\lambda I)=\begin{vmatrix}3-\lambda&1\\1&3-\lambda\end{vmatrix}=\lambda^2-6\lambda+8 A=[3113]det(AλI)=3λ113λ=λ26λ+8可以解得 λ 1 = 4 , λ 2 = 2 \lambda_1=4,\lambda_2=2 λ1=4λ2=2观察发现 λ 1 + λ 2 = 6 , λ 1 ∗ λ 2 = 8 \lambda_1+\lambda_2=6,\lambda_1*\lambda_2=8 λ1+λ2=6λ1λ2=8因此可以得出结论,二阶方阵的特征值求解公式为: λ 2 − t r a c e ( A ) + d e t ( A ) = 0 \lambda^2-trace(A)+det(A)=0 λ2trace(A)+det(A)=0
A − λ 1 = [ − 1 1 1 − 1 ] , ( A − 4 I ) x 1 = 0 , x 1 = [ 1 1 ] A-\lambda_1=\begin{bmatrix}-1&1\\1&-1\end{bmatrix},(A-4I)x_1=0,x_1=\begin{bmatrix}1\\1\end{bmatrix} Aλ1=[1111](A4I)x1=0x1=[11]
A − λ 2 = [ 1 1 1 1 ] , ( A − 2 I ) x 2 = 0 , x 2 = [ − 1 1 ] A-\lambda_2=\begin{bmatrix}1&1\\1&1\end{bmatrix},(A-2I)x_2=0,x_2=\begin{bmatrix}-1\\1\end{bmatrix} Aλ2=[1111](A2I)x2=0x2=[11]
本例中的矩阵和前面一个相比只是加了一个 3 I 3I 3I对应的特征值也是加了3,但是特征向量不改变。但是这一条推广到普遍现象并不成立。
三角阵的特征值如果矩阵是个上三角矩阵 A = [ 3 1 0 3 ] A=\begin{bmatrix}3&1\\0&3\end{bmatrix} A=[3013]
根据矩阵迹的定义 λ 1 + λ 2 = t r a c e ( A ) \lambda_1+\lambda_2=trace(A) λ1+λ2=trace(A)以及行列式 d e t ( A ) = λ 1 ∗ λ 2 det(A)=\lambda_1*\lambda_2 det(A)=λ1λ2可以求得两个特征值都是3.结论:上三角矩阵的特征值就是其主对角线上的元素
退化矩阵 ( A − λ I ) x = [ 0 1 0 0 ] x = 0 (A-\lambda I)x=\begin{bmatrix}0&1\\0&0\end{bmatrix}x=0 (AλI)x=[0010]x=0求得 x 1 = [ 1 0 ] x_1=\begin{bmatrix}1\\0\end{bmatrix} x1=[10],但是这个矩阵没有第二个无关特征向量,说明其是一个“退化矩阵”,即有两个相同的特征值但是特征向量短缺。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值