CP.26对称矩阵及正定性

本部分从对称矩阵的特征值、特征向量为出发点,并引出正定矩阵

1.对称矩阵

对称矩阵有如下两个性质:
( 1 ) A   =   A T (1)\textbf{A}\:=\:\textbf{A}^T (1)A=AT
(2)有正交的特征向量
其中第二点说的是,可以挑的出来一组正交特征向量,例如重特征根的情况。

1.1对称矩阵分解

从对称矩阵性质二可知,其特征向量必然线性无关,这是矩阵对角化分解的条件,对于对角化而言,通常我们表达为 A = S ∧ S − 1 A=S\wedge S^{-1} A=SS1其中S是特征向量组成的矩阵。
对于对称矩阵的对角分解表达为 A   =   Q   ∧   Q − 1 = Q ∧ Q T A\:=\:Q\:\wedge\:Q^{-1}=Q\wedge Q^T A=QQ1=QQT其中W的列向量标准正交 Q T = Q − 1 Q^T=Q^{-1} QT=Q1.
其实本身 A   =   Q Λ Q T \mathbf{A}\:=\:\mathbf{Q}\Lambda\mathbf{Q}^{T} A=QΛQT形式就是对称的 ( Q Λ Q T ) T   =   Q Λ Q T (\mathbb{Q}\Lambda Q^T)^T\:=\:\mathbb{Q}\Lambda Q^T (QΛQT)T=QΛQT。所以一旦确定某个矩阵是征订的,就可以将其分解成上述形式。

1.2对称矩阵的特征值

对称矩阵的特征值都是实数,但是为什么?
A x = λ x Ax=\lambda x Ax=λx
对该公式取共轭可得:
A   x − = λ − x − A\:\overset{-}{x}=\overset{-}{\lambda}\overset{-}{x} Ax=λx
然后再转置:
− T x A = − T x λ ‾ \begin{matrix}_{-^T}\\ x\end{matrix}A=\begin{matrix}_{-^T}\\ x\end{matrix}\overline{\lambda} TxA=Txλ
然后再左乘x:
x − T A x = x − T λ ‾ x \stackrel{-T}{x}Ax=\stackrel{-T}{x}\overline{\lambda}x xTAx=xTλx
因为本身 A x = λ x Ax=\lambda x Ax=λx
所以左乘x后的式子可以变成:
x ˉ T A x = λ x ˉ T x \bar{x}^T\mathrm{Ax}=\lambda\bar{x}^T x xˉTAx=λxˉTx继而推出:
λ = λ ‾ \lambda=\overline{{{\lambda}}} λ=λ因此 λ \lambda λ是实数。那么知道了对称矩阵特征值是实数之后,有没有办法判断是正实数还是负实数?
对称矩阵的性质:
(1)对称矩阵的主元正负个数与特征值的正负个数一致
有几个正的主元,特征值就有几个正的。
(2)对称矩阵的主元乘积等于特征值的乘积(行列式的值)

2.正定矩阵

正定矩阵就是一类对称矩阵,在对称的前提下满足下列条件:
(1)所有特征值都是正实数
(2)所有主元为正
(3)所有子行列式为正
例如:
[ 5 2 2 3 ] \begin{bmatrix}5&2\\ 2&3\end{bmatrix} [5223]
对矩阵消元可以得到主元分别为:5,11/5都是证书,而且这个矩阵是对称矩阵,所以该矩阵正定。
求取其特征值为: λ = 4 ± 5 \lambda=4\pm\sqrt{5} λ=4±5
特征值的积等于矩阵行列式,所以这个矩阵的行列式也是正的。但反过来不一定成立,并非所有特征值为正的矩阵都是正定矩阵,例如 [ − 1 0 0 − 3 ] \begin{bmatrix}-1&0\\ 0&-3\end{bmatrix} [1003]

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值