Chapter 5 (Eigenvalues and Eigenvectors): Eigenvectors and eigenvalues (特征向量和特征值)

本文为《Linear algebra and its applications》的读书笔记

Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues

  • Although a transformation x ↦ A x \boldsymbol x \mapsto A\boldsymbol x xAx may move vectors in a variety of directions, it often happens that there are special vectors which are transformed by A A A into scalar multiples of themselves.

在这里插入图片描述

  • Note that an eigenvector must be nonzero, by definition, but an eigenvalue may be zero.
  • Let λ \lambda λ be an eigenvalue of an invertible matrix A A A. Then λ − 1 \lambda^{-1} λ1 is an eigenvalue of A − 1 A^{-1} A1.

Eigenspace

特征空间

  • λ \lambda λ is an eigenvalue of an n × n n \times n n×n matrix A A A if and only if the equation
    ( A − λ I ) x = 0             ( 3 ) (A-\lambda I)\boldsymbol x=\boldsymbol 0\ \ \ \ \ \ \ \ \ \ \ (3) (AλI)x=0           (3)has a nontrivial solution. The set of all solutions of (3) is just the null space of the matrix A − λ I A-\lambda I AλI. So this set is a subspace of R n \mathbb R^n Rn and is called the eigenspace (特征空间) of A A A corresponding to λ \lambda λ.
    • The eigenspace consists of the zero vector and all the eigenvectors corresponding to λ \lambda λ.
    • Note that the linear combination of the eigenvectors corresponding to λ \lambda λ is still an eigenvector corresponding to λ \lambda λ.

EXAMPLE 3

Show that 7 is an eigenvalue of matrix A = [ 1 6 5 2 ] A=\begin{bmatrix}1&6\\5&2\end{bmatrix} A=[1562], and find the corresponding eigenvectors.

SOLUTION

  • The scalar 7 is an eigenvalue of A A A if and only if the equation
    A x = 7 x A\boldsymbol x=7\boldsymbol x Ax=7xhas a nontrivial solution, which is equivalent to ( A − 7 I ) x = 0 (A-7I)\boldsymbol x=\boldsymbol 0 (A7I)x=0
  • To solve this homogeneous equation, form the matrix
    在这里插入图片描述在这里插入图片描述The general solution has the form x 2 [ 1 1 ] x_2\begin{bmatrix} 1\\1\end{bmatrix} x2[11]. Each vector of this form with x 2 ≠ 0 x_2 \neq 0 x2=0 is an eigenvector corresponding to λ = 7 \lambda = 7 λ=7.

EXAMPLE 4

  • Let A = [ 4 − 1 6 2 1 6 2 − 1 8 ] A=\begin{bmatrix}4&-1&6\\2&1&6\\2&-1&8\end{bmatrix} A=422111668. An eigenvalue of A A A is 2. It can be shown that the basis for the corresponding eigenspace is { [ 1 2 0 ] , [ − 3 0 1 ] } \{\begin{bmatrix}1\\2\\0\end{bmatrix},\begin{bmatrix}-3\\0\\1\end{bmatrix}\} {120,301}. So the eigenspace is a two-dimensional subspace of R 3 \mathbb R^3 R3.
    在这里插入图片描述

推论: A A A A T A^T AT 的特征值相同

  • Show that λ \lambda λ is an eigenvalue of A A A if and only if λ \lambda λ is an eigenvalue of A T A^T AT.

SOLUTION

  • For any λ \lambda λ, ( A – λ I ) T = A T – ( λ I ) T = A T – λ I (A –\lambda I)^T = A^T – (\lambda I)^T = A^T – \lambda I (AλI)T=AT(λI)T=ATλI. Since ( A – λ I ) T (A – \lambda I)^T (AλI)T is invertible if and only if ( A – λ I ) (A – \lambda I) (AλI) is invertible, we conclude that A T – λ I A^T – \lambda I ATλI is not invertible if and only if A – λ I A – \lambda I AλI is not invertible. That is, λ \lambda λ is an eigenvalue of A T A^T AT if and only if λ \lambda λ is an eigenvalue of A A A.

EXERCISES 30

Consider an n × n n \times n n×n matrix A A A with the property that the column sums all equal the same number s s s. Show that s s s is an eigenvalue of A A A.

SOLUTION

  • [Hint: the row sums of A T A^T AT all equal the same number s s s]
    在这里插入图片描述
  • 也可以证明 d e t ( A − s I ) = 0 det(A-sI)=0 det(AsI)=0

Eigenvalues of a triangular matrix

  • The following theorem describes one of the few special cases in which eigenvalues can be found precisely. Calculation of eigenvalues will also be discussed in Section 5.2.

在这里插入图片描述
PROOF

  • For simplicity, consider the 3 × 3 3 \times 3 3×3 case. If A A A is upper triangular, then A − λ I A -\lambda I AλI has the form
    在这里插入图片描述The scalar λ \lambda λ is an eigenvalue of A A A if and only if the equation ( A − λ I ) x = 0 (A-\lambda I)\boldsymbol x=\boldsymbol 0 (AλI)x=0 has a nontrivial solution, that is, if and only if the equation has a free variable. It is easy to see that ( A − λ I ) x = 0 (A-\lambda I)\boldsymbol x=\boldsymbol 0 (AλI)x=0 has a free variable if and only if at least one of the entries on the diagonal of A − λ I A-\lambda I AλI is zero. This happens if and only if λ \lambda λ equals one of the entries a 11 , a 22 , a 33 a_{11}, a_{22}, a_{33} a11,a22,a33 in A A A.

Eigenvalue of 0

  • What does it mean for a matrix A A A to have an eigenvalue of 0? This happens if and only if the equation
    A x = 0 x A\boldsymbol x=0\boldsymbol x Ax=0xhas a nontrivial solution. But (4) is equivalent to A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0, which has a nontrivial solution if and only if A A A is not invertible.
  • Thus 0 is an eigenvalue of A A A if and only if A A A is not invertible. This fact will be added to the Invertible Matrix Theorem.

不同特征值对应的特征向量之间线性无关

在这里插入图片描述
PROOF

  • Suppose { v 1 , . . . , v r } \{\boldsymbol v_1,..., \boldsymbol v_r\} {v1,...,vr} is linearly dependent. Since v 1 \boldsymbol v_1 v1 is nonzero, One of the vectors in the set is a linear combination of the preceding vectors. Let p p p be the least index such that v p + 1 \boldsymbol v_{p+1} vp+1 is a linear combination of the preceding (linearly independent) vectors. Then there exist scalars c 1 , . . . , c p c_1,..., c_p c1,...,cp such that
    c 1 v 1 + . . . + c p v p = v p + 1        ( 5 ) c_1\boldsymbol v_1+...+ c_p\boldsymbol v_p=\boldsymbol v_{p+1}\ \ \ \ \ \ (5) c1v1+...+cpvp=vp+1      (5)Multiplying both sides of (5) by A A A, we obtain
    c 1 A v 1 + . . . + c p A v p = A v p + 1 c 1 λ 1 v 1 + . . . + c p λ p v p = λ p + 1 v p + 1        ( 6 ) c_1A\boldsymbol v_1+...+ c_pA\boldsymbol v_p=A\boldsymbol v_{p+1}\\c_1\lambda_1\boldsymbol v_1+...+ c_p\lambda_p\boldsymbol v_p=\lambda_{p+1}\boldsymbol v_{p+1}\ \ \ \ \ \ (6) c1Av1+...+cpAvp=Avp+1c1λ1v1+...+cpλpvp=λp+1vp+1      (6)Multiplying both sides of (5) by λ p + 1 \lambda_{p+1} λp+1 and subtracting the result from (6), we have
    c 1 ( λ 1 − λ p + 1 ) v 1 + . . . + c p ( λ p − λ p + 1 ) v p = 0        ( 7 ) c_1(\lambda_1-\lambda_{p+1})\boldsymbol v_1+...+ c_p(\lambda_p-\lambda_{p+1})\boldsymbol v_p=\boldsymbol 0\ \ \ \ \ \ (7) c1(λ1λp+1)v1+...+cp(λpλp+1)vp=0      (7)
  • Since { v 1 , . . . , v p } \{\boldsymbol v_1,..., \boldsymbol v_p\} {v1,...,vp} is linearly independent, the weights in (7) are all zero, which is impossible. Hence { v 1 , . . . , v r } \{\boldsymbol v_1,..., \boldsymbol v_r\} {v1,...,vr} cannot be linearly dependent and therefore must be linearly independent.

推论: n × n n \times n n×n 矩阵最多只有 n n n 个不同特征值

  • Show that an n × n n \times n n×n matrix can have at most n n n distinct eigenvalues.

PROOF

  • If an n × n n \times n n×n matrix has p p p distinct eigenvalues, then by Theorem 2 there would be a linearly independent set of p p p eigenvectors (one for each eigenvalue). Since these vectors belong to an n n n-dimensional vector space, p p p cannot exceed n n n.

Eigenvectors and Difference Equations

  • This section concludes by showing how to construct solutions of the first-order difference equation:
    x k + 1 = A x k        ( k = 0 , 1 , 2 , . . . )          ( 8 ) \boldsymbol x_{k+1}=A\boldsymbol x_k\ \ \ \ \ \ (k=0,1,2,...)\ \ \ \ \ \ \ \ (8) xk+1=Axk      (k=0,1,2,...)        (8)
  • If A A A is an n × n n \times n n×n matrix, then (8) is a recursive description of a sequence { x k } \{\boldsymbol x_k\} {xk} in R n \mathbb R^n Rn. A solution of (8) is an explicit description of { x k } \{\boldsymbol x_k\} {xk} whose formula for each x k \boldsymbol x_k xk does not depend directly on A A A or on the preceding terms in the sequence other than the initial term x 0 \boldsymbol x_0 x0.
  • The simplest way to build a solution of (8) is to take an eigenvector x 0 \boldsymbol x_0 x0 and its corresponding eigenvalue λ \lambda λ and let
    x k = λ k x 0        ( k = 1 , 2 , . . . )          ( 9 ) \boldsymbol x_{k}=\lambda^k\boldsymbol x_0\ \ \ \ \ \ (k=1,2,...)\ \ \ \ \ \ \ \ (9) xk=λkx0      (k=1,2,...)        (9)This sequence is a solution because
    A x k = A ( λ k x 0 ) = λ k ( A x 0 ) = λ k ( λ x 0 ) = λ k + 1 x 0 = x k + 1 A\boldsymbol x_{k}=A(\lambda^k\boldsymbol x_{0})=\lambda^k(A\boldsymbol x_{0})=\lambda^k(\lambda \boldsymbol x_{0})=\lambda^{k+1}\boldsymbol x_{0}=\boldsymbol x_{k+1} Axk=A(λkx0)=λk(Ax0)=λk(λx0)=λk+1x0=xk+1Linear combinations of solutions in the form of equation (9) are solutions, too!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值