一、智能体自我决策能力的机理
从人工智能和控制理论的角度看,智能体能够“自我决策”的核心在于其 “感知–认知–行动” 的循环过程,以及在此过程中引入自主学习与自主优化的机制。经过优化与补充,智能体具备自我决策能力的机理可以分解为以下五个部分:
1. 自主感知与信息获取
- 智能体通过传感器、数据库、互联网信息等多源数据采集,构建全面的环境感知能力。
- 通过数据清洗、去噪、融合等方法,提升感知数据的可靠性,结合高维特征学习预测未来可能情境,形成稳定的上下文理解。
- 实时性和高精度是自主感知的关键,通过卡尔曼滤波、粒子滤波等动态数据融合算法处理高速变化的数据。
2. 内部状态表示与知识表达
- 智能体以结构化知识库为核心存储和管理外部环境信息及自身状态(历史决策、资源储备、策略参数等)。
- 引入知识图谱、隐含表征(如深度学习模型)、高维状态向量等手段,实现外部与内部信息的语义化映射和认知抽象。
- 面对多变场景,采用迁移学习和小样本学习不断丰富知识表达的泛化能力。