2018 Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting

STGCN是一种深度学习框架,用于交通流量预测,结合了图卷积网络和一维卷积,有效捕捉时空相关性。模型包括时空模块和全连接层,通过GLU门控机制和残差连接增强信息传播。在多个交通数据集上的表现优于现有方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2018 [STGCN] Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting

这是一篇比较早的文章了,之前看过去没有详细写笔记,现在由于复习到GCN相关知识,想要更加深入的了解,于是在此简单记录一下本文的主要思路。

如果搜本篇论文到我的博客,请转身去知乎,这位大佬讲的很详细,而且详细复现!!熊猫侠 pytorch实现

摘要

及时准确的交通预测对城市交通控制和指导至关重要。由于交通流的高非线性和复杂性,传统的方法不能满足的要求中长期预测任务,往往忽视时空依赖性。本文提出了一种新的深度学习框架——时空图卷积网络(STGCN),以解决交通领域中的时间序列预测问题。我们没有应用正则卷积单位和递归单元,而是用表示问题,并且完全用卷积结构搭建模型,它可以以更少的参数实现更快的训练速度。实验表明,我们的模型STGCN通过国防部有效地捕捉到了全面的时空相关性灵多规模的交通网络,并在各种真实世界的交通数据集上始终优于最先进的baseline。

这是在交通研究中第一次应用纯卷积层,来同时从图结构的时间序列中提取时空信息。
在这里插入图片描述
将交通数据建立成时空图结构,在节点之间进行信息传递的方式来获取空间依赖特征。

  • 交通预测任务与道路传感器之间的位置关系有关,也受时间序列的影响。(也就是时空两个维度的依赖性)
  • 假设路网结构是不变的
模型

本文建立了具有完整卷积结构的模型,该模型包括两个时空模块和一个FC层,时空模块用于提取时空依赖性,全连接模型用于最后的预测。ST层包括两个时间层,中间1个空间层。时间依赖的提取是通过带有门限机制的卷积层实现的,如下图的第三部分,时间轴上进行一维因果卷积,用GLU(Gated Linear Unit)门控线性单元充当激活函数;空间依赖通过 图卷积神经网络<

### MATLAB 实现时空图卷积网络用于交通流量预测 为了实现《Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting》中的方法,需要构建一个能够处理时空数据的框架。该框架主要由以下几个部分组成: #### 1. 数据预处理 在开始之前,需准备并清理交通流量数据集。这通常涉及缺失值填充、标准化以及创建邻接矩阵。 ```matlab % 假设 data 是 N x T 的矩阵, 其中 N 表示节点数, T 表示时间步长. data = load('traffic_data.mat'); % 加载交通流量数据 adj_matrix = create_adjacency_matrix(data); % 创建邻接矩阵函数 normalized_data = normalize_traffic_data(data); % 归一化交通流量数据 ``` #### 2. 构建图结构 通过定义道路之间的连接关系来建立图结构。这里使用邻接矩阵表示图的关系。 ```matlab function adj_matrix = create_adjacency_matrix(road_network) % road_network 应包含路段间距离或其他衡量标准的信息 distances = calculate_distances_between_roads(road_network); threshold = determine_threshold(distances); % 设定阈值 [N, ~] = size(distances); adj_matrix = zeros(N); for i = 1:N for j = 1:N if distances(i,j) <= threshold && i ~= j adj_matrix(i,j) = exp(-distances(i,j)^2 / (2*threshold^2)); end end end end ``` #### 3. 定义 ST-GCN 层 ST-GCN 结合了空间上的 GCN 和时间维度上的 CNN 来捕捉复杂的时空模式[^3]. ```matlab classdef STGCNLayer < nnet.layer.Layer properties K; % 支持的最大阶数 F_in; F_out; W; b; end methods function layer = STGCNLayer(K,F_in,F_out) layer.K = K; layer.F_in = F_in; layer.F_out = F_out; szW = [F_out,K+1,F_in]; layer.W = randn(szW)*0.01; layer.b = zeros(F_out,1); end function Z = predict(layer,X,A_hat) % X: 输入特征向量 (B,N,T,F_in), B 批次大小, N 节点数量, T 时间长度, F_in 特征维数 % A_hat: 预处理后的拉普拉斯矩阵 B = size(X,1); N = size(A_hat,1); T = size(X,3); H = cell(T,1); for t=1:T Xt = reshape(X(:,:,t,:),[],size(X,4)); % 将三维张量转换成二维矩阵 HT = []; for k=0:min(layer.K,size(A_hat,1)-1) AkX = power(A_hat,k)*Xt; HT = cat(2,HT,AkX); end H{t} = tanh(reshape(linear_combination(HT,layer.W)+repmat(layer.b',size(B*N,1),1),... [B,N,layer.F_out])); end Z = cat(3,H{:}); end function dLdW = backward(layer,dLdZ,X,A_hat) ... end end end ``` #### 4. 训练模型 设置超参数,并利用反向传播算法调整权重以最小化损失函数。 ```matlab num_epochs = 50; batch_size = 64; layers = [ imageInputLayer([input_height input_width channels]) convolution2dLayer(filterSize,numFilters,'Padding','same') batchNormalizationLayer() reluLayer() fullyConnectedLayer(outputSize) regressionLayer()]; options = trainingOptions('adam',... 'MaxEpochs', num_epochs,... 'MiniBatchSize', batch_size,... 'InitialLearnRate', 0.001,... 'Shuffle', 'every-epoch',... 'Verbose', false,... 'Plots', 'training-progress'); model = trainNetwork(trainingData,layers,options); ``` 请注意上述代码片段仅为概念验证性质,在实际应用时还需要考虑更多细节优化及调试工作。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值