多行为推荐WSDM24|多行为序列推荐的全局异构图和目标兴趣去噪

 论文:https://www.atailab.cn/seminar2024Spring/pdf/WSDM_2024_Global%20Heterogeneous%20Graph%20and%20Target%20Interest%20Denoising%20for%20Multi-behavior%20Sequential%20Recommendation.pdf

关键词:多行为序列推荐,图神经网络,用户兴趣去噪

1 动机

多行为推荐老问题,行为间异质性,跨行为间的依赖性:

1 异构项转换:不同行为项之间可能存在复杂的转换。例如,用户查看和购买一些物品,可以根据行为类型将物品序列分类为子序列。不同子序列中的项具有不同的关系,例如从PV到PV,从Pur到Pur。两个物品之间也存在跨行为类型关系,如从PV到Pur,从Pur到PV。将这种关系定义为异构项目转换,包括相同类型行为之间的项目转换(引入类型转换)和不同类型之间的项目转换(跨类型转换),如下图所示。这些转换揭示了用户的个人行为模式和偏好,以及跨行为的项目的更广泛的关联规则。

2 辅助行为的干扰:在执行目标行为(Pur)之前,用户可能会进行大量的辅助行为(PV),这些辅助行为可能包含与用户最终兴趣无关甚至相反的信息。例如,用户可能浏览了许多项目,但只对其中几个感兴趣。


2 贡献

  • 引入全局异质物品图和目标兴趣去噪模块: 提出了全局物品-物品共现图本地物品-物品转移图,分别从全局和用户特定的视角建模物品间的异质性转移,利用图卷积网络和注意力机制进行行为聚合与关系感知,生成全局和个性化的物品表示。

  • 设计兴趣聚合模块减少辅助行为干扰: 提出了兴趣聚合模块,通过软注意力机制学习目标行为下的短期和长期兴趣表示,有效减少辅助行为对目标行为预测的干扰,提升了推荐的准确性。


3 准备工作

3.1 全局物品-物品共现图

全局物品-物品共现图(Gg​)用于捕捉在不同用户行为下物品之间的共现关系Gg​={Vg​,Eg​},Rg​ 代表了全局图中的不同关系类型。x \rightarrow y 表示从行为类型 x 到行为类型 y的物品关系(用户在浏览过某物品后购买了另一物品)。Eg​ 定义了图中物品节点之间的关系。每一条边 (v_i, v_j, r, w_{r_{ij}}) 表示物品节点 vi​ 和 vj之间的关系 r,并且有一个权重 w_{r_{ij}},其表示物品 vi和物品 vj在关系 r下的共现系数,使用改进的点对点互信息(PMI)来衡量物品在不同关系下的共现系数:

p(vi​,vj​,x→y):表示包含物品 vi和 vj,且行为类型分别为 x 和 y的物品序列的概率;

p(vi​,x)p(vj,y):表示物品 vi在行为类型 x 下的概率和物品 vj在行为类型 y下的概率。

Gg使用PMI计算物品间的共现系数,强相关的物品被连接在图中,形成边,并通过GCN进一步进行学习和聚合。

3.2 局部物品-物品转移图

局部物品-物品转移图是一个有向图,用来表示用户交互序列中的物品之间的关系。对于一个给定的交互序列 S,将其转化为G_s = \{V_s, E_s\},特别关注物品对之间的顺序性,即一个物品是否在另一个物品之前被用户交互。为此,定义了关系集合 Rs:

x,y∈B 表示物品之间的行为类型,B是所有可能的行为类型。+ 表示用户先交互物品 vi,然后交互物品 vj,反之亦然。边集 Es定义了局部物品-物品转移图中的边,这些边表示物品之间的顺序关系:

 r 是物品对之间的关系类型,来自集合 Rs,定义了物品间的顺序关系和行为类型。,如果物品 vi是一个浏览行为,物品 vj是购买行为,且  vi在 vj之前被用户交互,那么这条边 (v_i, v_j, x \overset{+}{\rightarrow} y) 表示用户先浏览物品 vi,然后购买物品 vj。


 4 模型

GHTID包括三个主要模块:(1)全局图卷积模块,包括项目到关系和关系到项目的信息传播阶段,用于编码项目表示。(2)局部图卷积模块,包含行为感知的注意力机制,用于编码局部项目表示。(3)兴趣聚合模块包括目标短期兴趣聚合、目标长期兴趣聚合和兴趣融合,用于提取用户兴趣的最终表示。

4.1 全局图卷积

分为两个部分:物品到关系的信息传递和关系到物品的信息聚合。

4.1.1 物品到关系

在全局物品共现图 Gg中,针对每种边类型 r,聚合物品节点的邻居信息,生成关系特定的消息:

 mvi​,r(l)​是在第 l层图卷积中,节点 vi通过边类型 r聚合的消息,w是共现强度,

4.1.2 关系到物品

将不同边类型 r 的消息mvi​,r(l)​聚合到节点 vi中,并使用注意力更新节点的表示,最后将各层的表示累加,得到最终的全局物品表示:

4.2 局部图卷积

基于局部转移图,结合用户特定的物品转移模式,通过图卷积操作对物品表示进行学习

4.2.1 局部信息传播

在Gs图中,将节点自身的特征与邻居节点的加权特征相加,更新节点表示:

4.2.2 行为感知注意力

通过注意力机制计算节点 vi 与其邻居节点 vj之间的权重,突出重要邻居,并进行归一化:

节点的最终表示是局部图卷积网络的最后一层表示。

 4.3 兴趣聚合模块

包括三个部分:目标短期兴趣聚合、目标长期兴趣聚合和兴趣融合。结合用户的短期和长期兴趣,生成目标行为下的最终兴趣表示。输入4.1以及4.2节生成的全局和局部表示并进行融合:

在兴趣聚合的部分,为了减少辅助行为对目标行为预测的干扰,使用目标行为掩码,把辅助行为全部mask了。目标行为掩码 M的作用是在兴趣聚合过程中,仅允许目标行为的物品进入聚合步骤。

4.3.1 目标短期兴趣聚合

用户的最后一项被用作短期兴趣的表示,即使它的行为类型可能不是目标行为(使用的是嵌入hvi,和掩码无关)。通过最近交互的物品(短期兴趣的主要反映),聚合目标行为相关的物品表示,减少其他行为的干扰:

 首先使用短期查询向量q_{\text{short}}和物品表示 hvi计算注意力权重,然后在通过目标行为掩码 M 筛选完目标行为相关的物品后生成短期兴趣。

4.3.2 目标长期兴趣聚合

通过所有目标行为相关的物品表示,反映用户的长期偏好:

首先使用目标行为相关物品表示的平均值作为长期兴趣的查询,并计算注意力权重从而聚合目标长期的兴趣。

4.3.3 兴趣融合

将用户的短期兴趣(反映当前意图)和长期兴趣(反映一般偏好)融合为最终兴趣表示:


 5 实验部分

 5.1 辅助行为鲁棒性实验

进行鲁棒性实验来分析GHTID抵抗辅助行为干扰的能力。将噪声以特定的比例添加到测试数据中的辅助行为中。中断数据的比例范围从0到50%,以10%的增量增加。评估了UB和天猫数据集在NDCG@10上的性能下降百分比。

与MBSTR相比,GHTID的性能下降速度要慢得多。而且,噪声比越大,性能差距越明显。这表明GHTID可以自适应地从辅助行为中提取与目标行为相关的信号,有助于提高对辅助行为的鲁棒性。


6 总结

GHTID通过构建全局异质物品共现图和局部物品转移图,捕捉了全局多关系特征与用户个性化行为模式。模型在全局图中利用基于注意力的图卷积模块提取不同行为类型下的物品共现关系,并在局部图中设计行为感知注意力机制聚合用户特定的物品转移模式。通过融合全局和局部表示,结合目标行为掩码机制,精准聚合短期和长期兴趣,减弱辅助行为干扰。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值