基于session的推荐系统综述
- 1 INTRODUCTION
- 2 FORMALIZATION AND NOTATIONS
- 3 SIGNIFICANCE, COMPLEXITY AND KEY CHALLENGES
- 4 AN OVERVIEW OF SBRS
- 5 CATEGORIZATION AND SUMMARIZATION
- 6 MODEL-FREE APPROACHES
- 7 MODEL-BASED APPROACHES
- 8 PROSPECTS AND FUTURE DIRECTIONS
-
- 8.1 Session-based Recommendations With General User Preference
-
- 8.2 Session-based Recommendations Considering More Contextual Factors
- 8.3 Session-based Recommendations With Noisy and Irrelevant Items
- 8.4 Session-based Recommendations for Multi-Step Recommendations
- 8.5 Session-based Recommendations With Cross-session Information
- 8.6 Session-based Recommendations with Cross-domain Information
文章链接
1 INTRODUCTION
推荐系统已经进化为一个基础性的工具,可以帮助用户做出合理的决策和选择,尤其是在大数据环境下,消费者不得不从大量的商品和服务中做出选择。提出了大量的RS模型和技术,许多并已成功应用。在这些RS模型中,content-based RS和协同过滤RS是两个代表性的推荐模型。学界和工业界已经证实了其有效性。
然而,上述的传统的RS仍存在许多缺点。其中一个就是这些模型只关注。其中一个比较严重的缺点是:这些模型只关注用户长期的、静态的偏好,而忽略了短期的交易模式。这种情况下, 用户在某个时间点的兴趣很可能被其历史浏览行为覆盖。这是因为RS挺长将一个基本交易单元(例如一个session)分解成更小粒度上的记录,然后再混合这些记录。这种分裂模式破坏了交易行为,其中就包括用户的偏好信息。
为解决以上问题,有必要考虑交易的结构。换句话说,有必要学习用户的交易行为。SBRS应势而出。这里,一个session可以理解为是包含了很多item(例如商品)的交易。和content-based RS、基于协同过滤的RS不同,SBRS综合考虑了session信息,并将一个session作为推荐的基本单元。如图1的底部所示,SBRS可以最大限度地减少由于忽略或者打破session结构而造成的信息损失。
除了在电子商务领域,SBRS还可以应用在网页推荐、POI推荐、旅游、歌曲、视频推荐等。为包含这些领域,这里的session就不仅仅指交易单元,而是在一段时间内,购买后者浏览的item的集合。
表1是SBRA和其他RS的对比。
在这篇综述中,将对SBRS进行全面系统的概述。将session作为推荐的基本单元,这是近年来一种相对新颖的推荐模型。
2 FORMALIZATION AND NOTATIONS
本节,我们将定义session和SBRS一些相关的概念。
Definition 2.1 (Session). 一个session指的是在一段时间内手机或者购买的item的集合。例如,一次交易中购买的item或用户一小段时间内听的歌曲也可以视为一个session。此外,用户在固定时间段内连续点击的网页也可以看做是一个session。
Definition 2.2 (Session-based recommender systems (SBRS)). 给定已有的session信息,如一个session的部分信息或者历史session,SBRA就是想依据一个session或者多个session之间的复杂关系预测出session中未知的部分或未来可能的session。
因此,SBRS可以分为两种:下一个item的推荐,这种推荐模型推荐的是当前session的一部分;下一个session的推荐。
同城,推荐应用程序,例如基于购物车的业务系统,会包含两个基本对象:user和item。用户集合为 U = { u 1 , u 2 , . . . , u ∣ U ∣ } U = \{u_{1}, u_{2}, ..., u_{|U|}\} U={
u1,u2,...,u∣U∣}, item集合为 I = { i 1 , i 2 , . . . , i ∣ I ∣ } I = \{i_{1}, i_{2},..., i_{|I|}\} I={
i1,i2,...,i∣I∣}。user和item的交互行为包括:click,buy等,是RS中重要的组成部分。例如,用户点击的所有的item形成click session;用户购买的item又可以形成交易session。通常,在一段时间内,一个用户发生交互的item构成一个session s = { i 1 , i 2 , . . . , i ∣ s ∣ } s = \{i_{1}, i_{2}, ..., i_{|s|}\} s={
i1,i2,...,i∣s∣}。Session的集合就是 S = { s 1 , s 2 , . . . , s ∣ S ∣ } S = \{s_{1}, s_{2}, ..., s_{|S|}\} S={
s1,s2,...,s∣S∣}。SBRS将未知的session作为目标 t \bm{t} t,利用已有的session信息来预测目标 t \bm{t} t。Session的上下文信息也可以分为两种,这取决于上下文是取自一个session还是多个。
Definition 2.3 (Intra-session context). 当前session记为 s n s_{n} sn,intra-session context C I a C^{Ia} CIa就是在session s n s_{n} sn中已知的item集合。即 C I a = { i ∣ i ∈ s n , i ̸ = i t } C^{Ia} = \{i | i \in s_{n}, i \not= i_{}t\} CIa={
i∣i∈sn,i