论文阅读:BLDnet: a semi-supervised change detection building damage framework using graph convolutional

文章内容总结


提出了 BLDNet,这是一种混合​​ CNN 和 GCN 的新颖架构,以半监督方式进行训练,以便及时获得预测。此外,文章介绍了如何将建筑和上下文建筑特征(元特征:狄罗尼三角网构建的先验特征)作为领域知识合并到图中,以改进预测结果。这是一种新颖的图结构,用于构建损伤变化检测,并能够从局部模式和非平稳邻域学习关系和表示,算法算法在xBD 数据集上进行训练和测试。
代码链接
文章链接

文章贡献

文章贡献:
• 建筑损坏识别的新颖表述为图节点分类,以根据局部特征以及与相邻样本的关系来学习表示。
• BLDNet,一种基于 Siamese CNN 的新颖架构,结合以半监督方式训练的 GCN,以减少获得新预测所需的标记样本数量。
在这里插入图片描述

• 通过知识域注入从贝鲁特港 2020 年爆炸中收集的城市数据的案例研究。
本文方法的总体架构:使用孪生网络提取深度特征像素(去除分类层)作为图节点,采用狄洛尼三角网确保建筑与周围邻居的连接(连接关系),变得权重用于度量节点之间的相似性,并将元特征嵌入到图中(改进领域知识的学习)。
在这里插入图片描述
在这里插入图片描述

文章数据处理思路(值得借鉴的):采用卷积网络来进行提取,利用图卷积网络探索全局特征关系。
文章代码是基于torch_geometric实现

总结一下图卷积神网络使用的库:

内容来自于文心一言

  • NetworkX:

NetworkX是一个用于创建、操作和研究复杂网络的库。它提供了大量的图算法和绘图工具,使得构建和分析图结构变得简单。
官方网站:https://networkx.org/

  • PyTorch Geometric (PyG):

PyTorch Geometric是基于PyTorch的几何深度学习扩展库,专注于图神经网络。它包含多种图神经网络模型和数据结构,可以方便地构建和训练GCN模型。
官方网站:https://pytorch-geometric.readthedocs.io/en/latest/

  • DGL (Deep Graph Library):

DGL是一个用于深度学习图模型的库,支持PyTorch和MXNet后端。它提供了大量的图神经网络层、模型和工具,可以高效地实现图卷积神经网络。
官方网站:https://www.dgl.ai/

  • Spektral:

Spektral是一个用于图神经网络的Python库,它支持TensorFlow和Keras后端。Spektral提供了多种图神经网络模型和数据加载器,使得构建和训练图神经网络模型变得简单。
官方网站:https://github.com/danielegrattarola/spektral

  • StellarGraph:

StellarGraph是一个用于机器学习的图神经网络库,基于TensorFlow和Keras构建。它提供了用于节点分类、链接预测和图嵌入的算法,以及用于加载和预处理图数据的工具。
官方网站:https://stellargraph.readthedocs.io/en/stable/

  • Graph-tool:

Graph-tool是一个高效、灵活且易于使用的Python库,用于处理和分析大型网络。尽管它主要关注网络分析而不是深度学习,但它提供了强大的图结构处理和数据可视化功能。
官方网站:https://graph-tool.skewed.de/

  • IGraph:

IGraph是一个开源的图和网络分析工具库,可用于C、C++和Python等语言。它提供了一组功能强大的算法和工具,用于创建、操作和分析复杂网络。
官方网站:https://igraph.org/python/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云朵不吃雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值