⚽开发平台:jupyter lab
🎈运行环境:python3、tensorflow2.x
第2章 tensorflow和keras快速入门 | iris数据集(自定义全连接层)
1. iris数据集 - 程序部分
1.1 程序2.10(完整代码)
import tensorflow as tf
import numpy as np
##加载数据
from sklearn.datasets import load_iris
data = load_iris()
## 转换数据形式
iris_data = np.float32(data.data)
iris_target = data.target
iris_data.shape,iris_target.shape #((150, 4), (150,))
## 对目标函数进行热编码化,数目为3
set(iris_target) # {0, 1, 2}
iris_target = np.float32(tf.keras.utils.to_categorical(iris_target,num_classes = 3))
iris_target
## 训练集的划分
train_data = tf.data.Dataset.from_tensor_slices((iris_data,iris_target)).batch(128)
## 自定义的层--全连接层
class MyLayer(tf.keras.layers.Layer):
def __init__(self,output_dim):
self.output_dim = output_dim
super(MyLayer,self).__init__()
def build(self,input_shape):
self.weight = tf.Variable