《基于Tensorflow的知识图谱实战》 --- iris数据集(自定义全连接层)

⚽开发平台:jupyter lab

🎈运行环境:python3、tensorflow2.x

1. iris数据集 - 程序部分

1.1 程序2.10(完整代码)

import tensorflow as tf
import numpy as np
##加载数据
from sklearn.datasets import load_iris
data = load_iris()

## 转换数据形式
iris_data = np.float32(data.data)
iris_target = data.target
iris_data.shape,iris_target.shape     #((150, 4), (150,))

## 对目标函数进行热编码化,数目为3
set(iris_target)  # {0, 1, 2}
iris_target = np.float32(tf.keras.utils.to_categorical(iris_target,num_classes = 3))
iris_target

## 训练集的划分
train_data = tf.data.Dataset.from_tensor_slices((iris_data,iris_target)).batch(128)

## 自定义的层--全连接层
class MyLayer(tf.keras.layers.Layer):
    def __init__(self,output_dim):
        self.output_dim = output_dim
        super(MyLayer,self).__init__()
    def build(self,input_shape):
        self.weight = tf.Variable
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值