不懂RAG的原理,永远只是文档搬运工!

最近一个月,像 coze 和 dify 这样的低代码平台把 RAG 功能做得越来越亲民,但想要真正玩转它,搞清楚背后的流程可是关键,不做文档搬运工。今天,我就带你一步步拆解 RAG 系统,用最轻松的方式告诉你,它是怎么让大语言模型(LLM)变得更聪明、更贴心的。

img

一、RAG系统:智能问答的秘密武器

RAG 系统是什么?简单来说,它就像一个超级能干的“知识管家”:一边从海量的外部资料里翻出你需要的“干货”,一边用大语言模型的“语言魔法”把这些干货整理成清晰、自然的回答。RAG 的魅力——“检索+生成”双剑合璧,让智能问答不再是冷冰冰的机器回复,而是温暖又靠谱的对话体验。接下来,我们就来拆开 RAG 的“魔法书”,看看它到底是怎么一步步施展魔法的。

img
学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。【点击蓝字获取】

【2025最新】AI大模型全套学习籽料(可白嫖):LLM面试题+AI大模型学习路线+大模型PDF书籍+640套AI大模型报告等等,从入门到进阶再到精通,超全面存下吧!

二、RAG系统的核心环节

简单来说,RAG 系统就是一种“检索+生成”的组合拳。它能从海量的外部知识中挖出有用的信息,再借助大语言模型的语言天赋,把这些信息整理成清晰、自然的回答。想象一下,它就像一个知识渊博又会讲故事的朋友,既能找到你需要的内容,还能用最舒服的方式讲给你听。

下面,我们就来拆解 RAG 系统的工作流程,看看每个环节是怎么串起来的。

1. 文本分块:把大书拆成小页

img

假设你有一本超级厚的书,里面全是知识,但每次查东西都要翻完整本书,太麻烦了。所以,第一步就是把这本书拆成一页一页的小块,也就是“文本分块”。

img

为什么要这么做呢?有三个原因:

  • 文档太大不好处理:有些资料可能有几百页,直接扔进去分析,电脑也吃不消。
  • 模型有长度限制:就像我们吃饭得一口一口来,嵌入模型也只能一次处理有限的文字量。
  • 方便找重点:如果整本书只有一个标签,查东西时就很难精准找到相关内容。

所以,文本分块就像是给知识“切片”,让后续步骤更顺利。

2. 生成嵌入:给每页书贴上“标签”

img

分好块之后,我们需要给每个文本块贴上一个特殊的“标签”,这个标签其实是一串数字,叫“嵌入向量”。生成这个向量的工具就是嵌入模型,它能把文字的意思浓缩成数字形式。

举个例子,这就像给每页书打上一个独一无二的“指纹”,通过这个指纹,我们就能快速判断这页书讲的是什么。后面找资料的时候,靠这些指纹就能快速匹配。

3. 向量数据库存储:建一个“记忆仓库”

img

有了这些数字指纹,我们得找个地方存起来,这就用到了向量数据库。你可以把它想象成 RAG 系统的“记忆仓库”,里面装满了所有文本块的指纹和原始内容。

这个仓库不只是个储物柜,它还能随时接收新资料,保持知识的更新。以后用户提问时,系统就会从这里翻出最相关的“记忆”来回答。向量数据库里不仅存了数字指纹,还保留了原始文本和一些附加信息,方便随时调用。

4. 用户输入查询:提问时间到!

img

好了,准备工作做完了,现在轮到用户上场了。用户输入一个问题,比如“RAG 系统是啥?”——这就正式开启了查询阶段。

5. 查询向量化:问题也得有“指纹”

img

为了找到答案,我们得把用户的问题也变成数字指纹。用的还是那个嵌入模型,这样问题和数据库里的文本块就有了“共同语言”,可以互相匹配了。

6. 检索相似块:翻出最相关的资料

img

接下来,系统会拿着问题的指纹,在向量数据库里找“最像”的文本块。

img

具体来说,它会挑出 K 个最相似的块(K 是提前设好的数量),这些块里很可能藏着问题的答案。这一步通常会用一种叫“近似最近邻搜索”的方法,速度快得像闪电。

7. 结果重排序(可选):再精挑细选一下

img

有时候,为了让答案更靠谱,系统会对找出来的文本块再排个序。这就像从一堆答案里挑出最贴切的几个,通常会用更厉害的模型(比如交叉编码器)来打分排序。不过,不是所有 RAG 系统都会这么做,很多直接用上一步的相似度结果就够了。

8. 生成最终响应:答案新鲜出炉

img

最后,把挑好的文本块交给大语言模型。模型会根据一个模板,把用户的问题和这些资料糅合在一起,生成一个既准确又自然的回答。整个过程就像厨师炒菜,原料是检索来的知识,火候是大语言模型的语言功底,最后端上桌的就是一道美味的答案。

三、总结

看完这8个步骤,RAG 系统的全貌是不是清晰多了它通过文本分块、嵌入生成、向量存储和检索生成这几步,把外部知识和大语言模型的能力完美结合了起来。结果呢?用户不仅能得到答案,还能收获更全面、更贴心的信息。

RAG的三大杀手锏
  • 知识新鲜:随时更新数据库,答案永远不过时。
  • 回答靠谱:检索机制确保不胡说八道。
  • 用途超广:智能客服、学习助手,哪儿都能用!

希望下次聊到智能问答,你也能拍胸脯说:“这我熟!”,你不仅会操作还能讲原理。

学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。【点击蓝字获取】

【2025最新】AI大模型全套学习籽料(可白嫖):LLM面试题+AI大模型学习路线+大模型PDF书籍+640套AI大模型报告等等,从入门到进阶再到精通,超全面存下吧!

### RAG(检索增强生成)的工作原理 RAG 是一种结合了信息检索技术和语言生成模型的技术,其核心目标在于提升大型语言模型处理知识密集型任务的能力[^1]。具体而言,RAG 的工作流程可以分为以下几个方面: #### 数据检索阶段 在数据检索阶段,RAG 使用一个预训练的检索模块来从大规模的知识库中提取与用户输入最相关的文档片段或上下文信息。这些文档通常存储在一个结构化数据库或者非结构化的语料库中。通过高效的检索算法,例如基于向量相似度的方法,RAG 能够快速定位到可能包含答案的相关内容。 #### 上下文编码阶段 一旦获取到了相关文档RAG 将用户的查询和检索到的文档一起送入一个编码器网络进行联合表示学习。此过程旨在捕捉查询与候选文档之间的交互关系,从而为后续生成提供更加丰富的背景支持[^2]。 #### 文本生成阶段 进入文本生成阶段后,RAG 利用解码器部分根据前面得到的综合表征逐步构建最终的回答。这一环节特别强调生成质量——即确保输出既忠实于原始资料又具备良好的可读性和连贯性。为此,在训练过程中会对生成器施加特定约束条件以促进上述特性的实现。 以下是简单的伪代码展示如何实现基本功能: ```python def rag_model(query, knowledge_base): # Step 1: Retrieve relevant documents from the knowledge base. retrieved_docs = retrieve_relevant_documents(query, knowledge_base) # Step 2: Encode query and retrieved documents into a joint representation. encoded_representation = encode_query_and_documents(query, retrieved_docs) # Step 3: Generate response based on the encoded representation. generated_response = generate_response(encoded_representation) return generated_response ``` ### 总结 综上所述,RAG 技术通过引入外部知识源并将其融入至生成流程之中,显著增强了传统纯自回归预测模式下的表达能力以及事实准确性水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值