Python 数据分析实战:在线教育行业发展研究

目录

一、案例背景

二、代码实现

2.1 数据收集

2.2 数据探索性分析

2.3 数据清洗

2.4 数据分析

2.4.1 不同年龄段用户课程偏好分析

2.4.2 课程评价与用户留存关系分析

2.4.3 在线教育行业未来发展预测

三、主要的代码难点解析

3.1 数据收集

3.2 数据清洗 - 用户行为数据处理

3.3 数据分析 - 不同年龄段用户课程偏好分析

3.4 数据分析 - 课程评价与用户留存关系分析

3.5 数据可视化

四、可能改进的代码

4.1 数据收集改进

4.2 数据清洗改进

4.3 数据分析改进


一、案例背景

随着互联网技术的飞速发展,在线教育行业近年来呈现出爆发式增长。它打破了传统教育在时间和空间上的限制,为学习者提供了丰富多样的课程选择,满足了不同人群的学习需求。从 K12 教育到职业培训,从语言学习到兴趣爱好培养,在线教育覆盖了教育领域的各个细分市场。然而,行业在快速发展过程中也面临着诸多挑战,如竞争激烈、课程质量参差不齐、用户留存率低等问题。借助 Python 强大的数据处理和分析能力,对在线教育行业相关数据进行深入挖掘和分析,有助于企业精准把握市场趋势、优化课程产品、提升用户体验和运营效率,从而在激烈的市场竞争中脱颖而出。

二、代码实现

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import requests
from bs4 import BeautifulSoup

2.1 数据收集

数据来源广泛,涵盖行业研究报告网站(如艾瑞咨询、智研咨询)、在线教育平台用户行为数据、社交媒体上关于在线教育的讨论以及教育部门发布的相关统计数据。

  • 从艾瑞咨询网站抓取在线教育市场规模数据:

url = 'https://www.iresearch.com.cn/report/online_education.html'
headers = {
    'User - Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers = headers)
soup = BeautifulSoup(response.text, 'html.parser')
market_size_data = []
div = soup.find('div', class_='market - size - content')
items = div.find_all('li')
for item in items:
    year = item.find('span', class_='year - info').text.strip()
    market_size = float(item.find('span', class_='size - value').text.strip().replace('亿元', ''))
    market_size_data.append({'Year': year, 'Market_Size': market_size})
market_size_df = pd.DataFrame(market_size_data)

  • 从某在线教育平台 API 获取用户行为数据(假设已获得合法的 API 访问权限):

import json
api_url = 'https://api.onlineeducationplatform.com/user_behavior'
headers = {
    'Authorization': 'your_api_key',
    'Content - Type': 'application/json'
}
response = requests.get(api_url, headers = headers)
if response.status_code == 200:
    user_behavior_data = json.loads(response.text)
    user_behavior_df = pd.DataFrame(user_behavior_data)
else:
    print('Failed to get user behavior data')

2.2 数据探索性分析

# 查看市场规模数据基本信息
print(market_size_df.info())
# 查看用户行为数据基本信息
print(user_behavior_df.info())

# 分析在线教育市场规模随时间变化趋势
market_size_df['Year'] = pd.to_numeric(market_size_df['Year'])
plt.figure(figsize=(12, 6))
sns.lineplot(x='Year', y='Market_Size', data=market_size_df)
plt.title('Trend of Online Education Market Size')
plt.xlabel('Year')
plt.ylabel('Market Size (billion yuan)')
plt.show()

# 查看用户在不同课程类型上的学习时长分布
course_type_duration = user_behavior_df.groupby('Course_Type')['Study_Duration'].sum()
plt.figure(figsize=(10, 6))
sns.barplot(x=course_type_duration.index, y=course_type_duration.values)
plt.title('Distribution of User Study Duration by Course Type')
plt.xlabel('Course Type')
plt.ylabel('Total Study Duration (hours)')
plt.xticks(rotation=45)
plt.show()

2.3 数据清洗

# 市场规模数据清洗
# 检查并处理缺失值
market_size_df.dropna(inplace = True)
# 去除重复记录
market_size_df = market_size_df.drop_duplicates()

# 用户行为数据清洗
# 处理异常学习时长数据,如学习时长为负数等情况
user_behavior_df = user_behavior_df[user_behavior_df['Study_Duration'] >= 0]
# 处理异常用户操作数据,如不合理的点击次数等
user_behavior_df = user_behavior_df[(user_behavior_df['Click_Number'] >= 0) & (user_behavior_df['Click_Number'] <= 1000)]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧十一郎@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值