重新思考基于Point标注的弱半监督目标检测

本文分析了基于点标注的弱半监督目标检测,指出其旨在减少标注时间,通过点标注预测框坐标。尽管节省了约58.9%的标注时间,但性能增益依赖于点标注与全标注的时间比例。文章强调在对比性能时需注意出发点,当前该领域仍处于初期阶段,期待未来的发展。
摘要由CSDN通过智能技术生成

1、背景介绍

 

目标检测任务中,标注大量的框比较费时间,因此,大家用各种各样的方法来减少标注消耗的时间。其中常见的做法是利用半监督的方式在仅有少量标注数据的情况下,利用剩余未标注的数据,最终与全标注数据的模型性能相近。

除了半监督的方法,近些年出现了一个新的子领域——基于点标注的弱半监督目标检测。所谓的点标注,指的是在标注的时候不直接以框的形式进行标注,而是以点代替(存在一部分是全标注数据,即既有点标注也有框标注),下图是一个较为直观的展示:

在这类标注的前提下,研究者们提出了一系列算法来高效的利用他们来逼近以框的方式进行标注的算法性能。

2、常见算法列举

当前,基于点标注的弱半监督目标检测还是一个较新的领域,因此,相关工作不是特别多,下面是调研得到的一些算法:

  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于point-based的3D目标检测是一种使用云数据进行目标检测和定位的方法。云数据是由激光雷达等传感器获取的,可以提供物体的三维信息。在这种目标检测方法中,我们主要通过以下步骤实现: 首先,需要对云数据进行预处理。这包括云滤波、下采样和聚类等操作,以去除噪音并减少云数量,以便更高效地进行目标检测。 其次,通过基于的特征提取方法,从云数据中提取特征。这些特征可以是的位置、法向量、颜色或其他任何能够描述特征的属性。通过使用这些特征,我们可以更好地区分不同的物体,并提高目标检测的准确性。 接下来,采用机器学习或深度学习的方法,训练一个目标检测模型。可以使用传统的机器学习算法,如支持向量机(SVM)或随机森林,也可以使用深度学习算法,如卷积神经网络(CNN)或云的变种网络,如PointNet或PointNet++。训练模型时,需要使用带有标注云数据进行监督学习,以便模型能够学习到不同物体的特征。 最后,在测试阶段,将经过预处理和特征提取的云数据输入到训练好的模型中。模型会根据学习到的特征,对云进行分类和定位,将不同的目标物体与背景区分开来,并计算出它们的位置、形状和尺寸等信息。 基于point-based的3D目标检测方法具有高度的灵活性和准确性,可以应用于自动驾驶、智能安防等领域,有助于提高系统的感知能力和决策准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值