论文标题:Mapping Degeneration Meets Label Evolution: Learning Infrared Small Target Detection with Single Point Supervision
代码:https://github.com/XinyiYing/LESPS

导读&动机
本文探讨了红外小目标检测领域的一个重要问题,即如何在降低标注成本的同时实现高性能的目标检测。红外小目标检测在诸如交通监控、海上救援和军事监视等民用和军用领域具有广泛的应用。然而,由于红外小目标通常具有小尺寸、弱信号、无规则形状和无纹理等特点,并且容易受到复杂背景干扰,因此传统方法需要复杂的手工特征工程和大量标注数据,成本高昂。
为了解决这一问题,本文引入了一种创新的方法,即基于单点监督的弱监督红外小目标检测框架(LESPS)。作者观察到,在单点标签的监督下,卷积神经网络(CNN)首先学会在图像中分割出靠近目标的像素区域,然后逐渐学会以高置信度预测目标的点级别标签。因此,作者提出LESPS 框架,通过迭代地更新标签和网络训练,最终使网络能够自动生成像素级伪标签,实现了端到端的红外小目标检测。
本文贡献
我们首次研究了弱监督SIRST检测,并引入了可以显著降低注释成本的LESPS
我们发现了映射退化现象,并利用这种现象通过LESPS从给定的点标签中自动回归出像素级的伪标签
实验结果表明,我们的框架可以应用于不同的现有红外小目标检测网络,使其在像素级交集联合(IoU)和目标级别检测概率(Pd)方面实现了超过70%和95%的全面监督性能。
相关工作
红外小目标检测:在过去几十年里,已经提出了各种各样的红外小目标检测方法,包括传统方法(如基于滤波的方法、基于局部对比度的方法和基于低秩的方法)以及最近的深度学习方法。与传统方法相比,深度学习方法,尤其是卷积神经网络(CNNs),能够以数据驱动的方式学习输入图像与真实标签之间的非线性映射,因此在处理