自动控制原理期末复习(Part3时域分析)

本文涉及图片均来自《自动控制原理(第2版)》(清华大学出版社)

第三章 线性系统的时域分析法

接下来的三个章节将分别介绍线性系统的时域分析法、根轨迹分析法、频域分析法,这三个部分的结构十分相似,每个部分基本都由三个板块构成:分析系统的稳定性(判稳)、系统瞬态性能和稳态性能(性能)、改善性能的方法(设计)

本章讨论时域分析,就是控制系统在一定的输入信号作用下,根据系统输出量的时域表达式,分析系统的稳定性瞬态稳态性能。时域分析的特点就是直观准确,表达式是关于时间 t t t的函数,所以也称作系统的时间响应

一、典型的输入信号

名称信号定义拉氏变换
脉冲信号 δ ( t ) = { 0 ,   t ≠ 0 ∞ ,   t = 0 \delta(t)=\bigg\{ \begin{matrix} 0,\ t\not= 0 \\ \infty,\ t=0 \end{matrix} δ(t)={0, t=0, t=0 ∫ − ∞ + ∞ δ ( t ) d t = 1 \int_{-\infty}^{+\infty}\delta(t)dt=1 +δ(t)dt=1 L [ δ ( t ) ] = 1 L[\delta(t)]=1 L[δ(t)]=1
阶跃信号 r s ( t ) = { 0 ,   t < 0 A ⋅ 1 ( t ) ,   t ≥ 0 r_s(t)=\bigg\{ \begin{matrix} 0,\ t< 0 \\ A·1(t),\ t\geq0 \end{matrix} rs(t)={0, t<0A1(t), t0 L [ 1 ( t ) ] = 1 s ,   A = 1 L[1(t)]=\frac{1}{s},\ A=1 L[1(t)]=s1, A=1
斜坡信号(速度阶跃) r v ( t ) = { 0 ,   t < 0 A t ,   t ≥ 0 r_v(t)=\bigg\{ \begin{matrix} 0,\ t< 0 \\ At,\ t\geq0 \end{matrix} rv(t)={0, t<0At, t0 L [ t ] = 1 s 2 ,   A = 1 L[t]=\frac{1}{s^2},\ A=1 L[t]=s21, A=1
抛物线信号(加速度阶跃) r a ( t ) = { 0 ,   t < 0 1 2 A t 2 ,   t ≥ 0 r_a(t)=\bigg\{ \begin{matrix} 0,\ t< 0 \\ \frac 1 2 At^2,\ t\geq0 \end{matrix} ra(t)={0, t<021At2, t0 L [ 1 2 t 2 ] = 1 s 3 ,   A = 1 L[\frac{1}{2}t^2]=\frac{1}{s^3},\ A=1 L[21t2]=s31, A=1
正弦信号 r ( t ) = { 0 ,   t < 0 A s i n ω t ,   t ≥ 0 r(t)=\bigg\{ \begin{matrix} 0,\ t< 0 \\ Asin\omega t,\ t\geq0 \end{matrix} r(t)={0, t<0Asinωt, t0 L [ s i n ω t ] = ω s 2 + ω 2 ,   A = 1 L[sin\omega t]=\frac{\omega}{s^2+\omega^2},\ A=1 L[sinωt]=s2+ω2ω, A=1

二、瞬态响应、稳态响应与性能指标

2.1 瞬态响应

又称瞬态过程或过渡过程,是系统在典型输入信号作用下,输出量从初始状态到最终状态的响应过程。瞬态响应过程曲线可能表现为衰减振荡、等幅振荡或发散等形式,一个稳定运行的控制系统的瞬态过程必须是衰减的。

瞬态性能指标

衰减振荡的单位借阅响应曲线

  1. 上升时间 t r t_r tr:单位阶跃响应第一次达到稳态值的时间。上升时间越短,响应速度越快。
  2. 延迟时间 t d t_d td:单位阶跃响应第一次达到稳态值50%的时间。
  3. 峰值时间 t p t_p tp:单位阶跃响应到达第一个峰值的时间
  4. 最大超调量 δ % \delta \% δ%:单位阶跃响应的最大值 y m a x = y ( t p ) y_{max}=y(t_p) ymax=y(tp)与稳态值 y ( ∞ ) y(\infty) y()之差与稳态值的之比的百分数,即: δ % = y ( t p ) − y ( ∞ ) y ( ∞ ) × 100 % \delta \%=\frac{y(t_p)-y(\infty)}{y(\infty)}\times 100\% δ%=y()y(tp)y()×100%单调上升的阶跃响应没有超调量和峰值时间。
  5. 调整时间 t s t_s ts:当 y ( t ) y(t) y(t) y ( ∞ ) y(\infty) y()的误差绝对值小于等于规定允许值,且以后不再超过次值所需要的最短时间。即: ∣ y ( t ) − y ( ∞ ) ∣ ≤ y ( ∞ ) × Δ % ,   t ≥ t s |y(t)-y(\infty)|\leq y(\infty)\times \Delta \%,\ t\geq t_s y(t)y()y()×Δ%, tts
  6. 振荡次数 N N N:从开始到调节时间内,单位阶跃响应穿越稳态值次数的一半。

2.2 稳态响应

又称稳态过程,是系统在典型输入信号作用下,当时间趋近于无穷大时,系统的输出响应状态。工程上把瞬态响应在调节时间以后的响应过程视为稳态过程。

稳态性能指标

主要是稳态误差,详见下方介绍。

三、典型一阶系统

3.1 数学模型

一阶系统微分方程为:
T d y ( t ) d t + y ( t ) = r ( t ) T\frac{dy(t)}{dt}+y(t)=r(t) Tdtdy(t)+y(t)=r(t)
零初始条件下,一阶系统传递函数为:
Φ ( s ) = Y ( s ) R ( s ) = 1 T s + 1 \Phi(s)=\frac{Y(s)}{R(s)}=\frac{1}{Ts+1} Φ(s)=R(s)Y(s)=Ts+11

3.2 一阶系统对典型输入信号的响应(上一个是下一个的导数关系)

输入信号输出响应
δ ( t ) \delta(t) δ(t) e − t / T / T ,   t ≥ 0 e^{-t/T}/T,\ t\geq 0 et/T/T, t0
1 ( t ) 1(t) 1(t) 1 − e − t / T ,   t ≥ 0 1-e^{-t/T},\ t\geq 0 1et/T, t0
t t t t − T + T e − t / T ,   t ≥ 0 t-T+Te^{-t/T},\ t\geq 0 tT+Tet/T, t0
t 2 / 2 t^2/2 t2/2 t 2 / 2 − T t + T 2 ( 1 − e − t / T ) ,   t ≥ 0 t^2/2-Tt+T^2(1-e^{-t/T}),\ t\geq 0 t2/2Tt+T2(1et/T), t0

3.3 一阶系统的瞬态性能指标(针对单位阶跃响应)

在这里插入图片描述

  1. 延迟时间: t d ≈ 0.693 T t_d \approx 0.693T td0.693T
  2. 上升时间: t r ≈ 2.197 T t_r\approx 2.197T tr2.197T
  3. 调整时间: t s = − T l n Δ % ≈ { 4 T ,   Δ = 2 3 T ,   Δ = 5 t_s=-Tln\Delta\%\approx\bigg\{\begin{matrix}4T,\ \Delta=2\\ 3T,\ \Delta=5 \end{matrix} ts=TlnΔ%{4T, Δ=23T, Δ=5

3.4 改善一阶系统瞬态性能(减小时间常数)

方法一:通过负反馈减小时间常数
在这里插入图片描述
Φ ( s ) = 1 α + 1 T α + 1 s + 1 \Phi(s)=\frac{\frac{1}{\alpha+1}}{\frac{T}{\alpha+1}s+1} Φ(s)=α+1Ts+1α+11

方法二:通过增加开环放大系数减小时间常数

在这里插入图片描述
Φ ( s ) = 1 1 α K s + 1 = 1 T α s + 1 \Phi(s)=\frac{1}{\frac{1}{\alpha K}s+1}=\frac{1}{\frac{T}{\alpha }s+1} Φ(s)=αK1s+11=αTs+11

四、典型二阶系统的瞬态性能

4.1 数学模型

二阶系统微分方程为:
T 2 d 2 d ( t ) d t 2 + 2 ζ T d y ( t ) d t + y ( t ) = r ( t ) ,   t ≥ 0 T^2\frac{d^2d(t)}{dt^2}+2\zeta T\frac{dy(t)}{dt}+y(t)=r(t),\ t\geq0 T2dt2d2d(t)+2ζTdtdy(t)+y(t)=r(t), t0
零初始条件下,二阶系统传递函数为:
Φ ( s ) = Y ( s ) R ( s ) = 1 T 2 s 2 + 2 ζ T s + 1 = ω n 2 s 2 + 2 ζ ω n s + ω n 2 \Phi(s)=\frac{Y(s)}{R(s)}=\frac{1}{T^2s^2+2\zeta Ts+1}=\frac{\omega_n^2}{s^2+2\zeta \omega_n s+\omega_n^2} Φ(s)=R(s)Y(s)=T2s2+2ζTs+11=s2+2ζωns+ωn2ωn2

4.2 二阶系统的单位阶跃响应

根据传递函数分母多项式(特征方程)解的情况分类:

阻尼系数特征方程根特征方程根的位置单位阶跃响应的形式
无阻尼 ζ = 0 \zeta=0 ζ=0 ± j ω n \pm j\omega_n ±jωn虚轴上一对共轭虚根等幅周期振荡
欠阻尼 0 < ζ < 1 0<\zeta<1 0<ζ<1 − ζ ω n ± j ω n 1 − ζ 2 -\zeta\omega_n\pm j\omega_n\sqrt{1-\zeta^2} ζωn±jωn1ζ2 s左半平面一对共轭复根衰减振荡
临界阻尼 ζ = 1 \zeta=1 ζ=1 − ω n -\omega_n ωn负实轴上一对重根单调上升
过阻尼 ζ > 0 \zeta>0 ζ>0 − ζ ω n ± ω n ζ 2 − 1 -\zeta\omega_n\pm \omega_n\sqrt{\zeta^2-1} ζωn±ωnζ21 负实轴上两个互异根单调上升

4.3 二阶系统的瞬态性能指标

欠阻尼典型二阶系统的瞬态性能指标
  1. 上升时间: t r = π − a r c c o s ζ ω n 1 − ζ 2 = π − β ( 阻尼角 ) ω d ( 阻尼振荡频率 ) t_r=\frac{\pi-arccos\zeta}{\omega_n\sqrt{1-\zeta^2}}=\frac{\pi-\beta(阻尼角)}{\omega_d(阻尼振荡频率)} tr=ωn1ζ2 πarccosζ=ωd(阻尼振荡频率)πβ(阻尼角)
  2. 峰值时间: t p = π ω n 1 − ζ 2 = π ω d t_p=\frac{\pi}{\omega_n\sqrt{1-\zeta^2}}=\frac{\pi}{\omega_d} tp=ωn1ζ2 π=ωdπ
  3. 超调量: δ % = e − ζ π 1 − ζ 2 × 100 % \delta\%=e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}\times100\% δ%=e1ζ2 ζπ×100%
  4. 调整时间: t s ≈ { 4 ζ ω n ,   Δ = 2 3 ζ ω n ,   Δ = 5 t_s\approx\bigg\{\begin{matrix}\frac{4}{\zeta\omega_n},\ \Delta=2\\ \frac{3}{\zeta\omega_n},\ \Delta=5\end{matrix} ts{ζωn4, Δ=2ζωn3, Δ=5
  5. 振荡次数: N = t s 2 π / ω d N=\frac{t_s}{2\pi/\omega_d} N=2π/ωdts
过阻尼(临界阻尼)二阶系统的瞬态性能指标
  1. 上升时间: t r = 1 + 1.5 ζ + ζ 2 ω n t_r=\frac{1+1.5\zeta+\zeta^2}{\omega_n} tr=ωn1+1.5ζ+ζ2
  2. 调整时间: t s ≈ { 8.4 / ω n , Δ = 2 6.6 / ω n , Δ = 5 t_s\approx\bigg\{\begin{matrix}8.4/\omega_n, \Delta=2\\ 6.6/\omega_n, \Delta=5\end{matrix} ts{8.4/ωn,Δ=26.6/ωn,Δ=5

4.4 二阶系统瞬态性能改善

比例微分校正

在这里插入图片描述
传递函数为: Φ ( s ) = ω n 2 ( k p + k d s ) s 2 + ( 2 ζ ω n + ω n 2 k d ) s + ω n 2 k p = 1 z ⋅ ω k d 2 ( s + z ) s 2 + 2 ζ k d ω k d s + ω k d 2 \Phi(s)=\frac{\omega_n^2(k_p+k_d s)}{s^2+(2\zeta\omega_n+\omega_n^2k_d)s+\omega_n^2k_p}=\frac 1 z ·\frac{\omega_{kd}^2(s+z)}{s^2+2\zeta_{kd}\omega_{kd}s+\omega_{kd}^2} Φ(s)=s2+(2ζωn+ωn2kd)s+ωn2kpωn2(kp+kds)=z1s2+2ζkdωkds+ωkd2ωkd2(s+z)
其中, z = k p k d ,   ω k d = k p ω n ,   ζ k d = ( ζ + ω n k d 2 ) / k p z=\frac{k_p}{k_d},\ \omega_{kd}=\sqrt{k_p\omega_n},\ \zeta_{kd}=(\zeta+\frac{\omega_nk_d}{2})/\sqrt{k_p} z=kdkp, ωkd=kpωn , ζkd=(ζ+2ωnkd)/kp

速度反馈校正

在这里插入图片描述
传递函数为: Φ ( s ) = ω n 2 s 2 + ( 2 ζ ω n + τ ω n 2 ) s + ω n 2 \Phi(s)=\frac{\omega_n^2}{s^2+(2\zeta\omega_n+\tau\omega_n^2)s+\omega_n^2} Φ(s)=s2+(2ζωn+τωn2)s+ωn2ωn2

五、高阶系统的时域分析

跳过讨论,直接上结论:

  1. 若某极点远离原点,其相应的瞬态响应分量的系数很小
  2. 若某极点接近一个零点,而远离其他零极点,则相应的瞬态响应分量的系数也很小
  3. 若某极点远离零点而又接近原点或其他极点,则相应的瞬态响应分量的系数比较大

主导极点

满足以下情况的极点称为主导极点:

  1. 离虚轴最近且周围没有零点
  2. 其他极点与虚轴的距离比该极点与虚轴的距离的五倍还要远

保留主导极点,略去其他极点,可以化简系统。但是要注意简化系统的稳态值要与原系统的稳态值一致

六、线性控制系统的稳定性分析

6.1 线性控制系统渐进稳定的充分必要条件

系统的所有特征根必须位于s平面的左半开平面。

6.2 代数稳定性判据(只讨论劳斯判据)

假设线性控制系统的特征方程为: a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 = 0 a_ns^n+a_{n-1}s^{n-1}+\dots+a_1s+a_0=0 ansn+an1sn1++a1s+a0=0
劳斯阵列定义为: s n a n a n − 2 a n − 4 … s n − 1 a n − 1 a n − 3 a n − 5 … s n − 2 b 1 b 2 b 3 … s n − 3 c 1 c 2 c 3 … ⋮ ⋮ s 0 x 1 \begin{array}{c|llll} {s^n}&{a_n}&{a_{n-2}}&{a_{n-4}}&{\dots}\\{s^{n-1}}&{a_{n-1}}&{a_{n-3}}&{a_{n-5}}&{\dots}\\{s^{n-2}}&{b_1}&{b_2}&{b_3}&{\dots}\\{s^{n-3}}&{c_1}&{c_2}&{c_3}&{\dots}\\ {\vdots}&{\vdots}\\ {s^0}&{x_1}\end{array} snsn1sn2sn3s0anan1b1c1x1an2an3b2c2an4an5b3c3
其中, b i = − 1 a n − 1 ∣ a n a n − 2 i a n − 1 a n − 1 − 2 i ∣ ,   i = 1 , 2 , … b_i=\frac{-1}{a_{n-1}}\begin{vmatrix}a_n&a_{n-2i}\\ a_{n-1} &a_{n-1-2i} \end{vmatrix},\ i=1,2,\dots bi=an11 anan1an2ian12i , i=1,2,
下方各行都按照这种方式生成相应位置的元素。
系统特征方程具有正实部根的数目与劳斯阵列第一列元素符号变化的次数相等。因此线性系统稳定的充要条件是:劳斯阵第一列元素没有符号变化。

特殊情况:

  1. 某一行的第一列元素为0,用一个小正数 ϵ \epsilon ϵ代替,根据此数继续计算,若它与其上面或下面元素符号相反,则记一次符号变化。
  2. 某一行元素全为0,说明系统的特征方程存在着大小相等而径向位置相反的根,至少存在下述几种特征根之一:存在大小相等、符号相反的一对实根;或共轭虚根;或对称于虚根的两对共轭复根。此时可以用全零行的上一行元素构造一个辅助方程,并将该辅助方程对复变量s求导,用求导后方程的系数取代全零行元素,继续构建劳斯阵。辅助方程的根一般就是共轭复根。

七、线性控制系统的稳态性能分析

7.1 系统型别

系统的开环传函可表示为: G k ( s ) = K s ν ⋅ ∏ i = 1 m 1 ( τ i s + 1 ) ∏ k = 1 m 2 ( τ k 2 s 2 + 2 ζ k τ k s + 1 ) ∏ j = 1 n 1 ( T j s + 1 ) ∏ l = 1 n 2 ( T l 2 s 2 + 2 ζ l T l s + 1 ) = K s ν ⋅ G 0 ( s ) G_k(s)=\frac{K}{s^{\nu}}·\frac{\prod\limits_{i=1}^{m_1}(\tau_is+1)\prod\limits_{k=1}^{m_2}(\tau_k^2s^2+2\zeta_k\tau_ks+1)}{\prod\limits_{j=1}^{n_1}(T_js+1)\prod\limits_{l=1}^{n_2}(T_l^2s^2+2\zeta_lT_ls+1)}=\frac{K}{s^{\nu}}·G_0(s) Gk(s)=sνKj=1n1(Tjs+1)l=1n2(Tl2s2+2ζlTls+1)i=1m1(τis+1)k=1m2(τk2s2+2ζkτks+1)=sνKG0(s)
满足: m 1 + 2 m 2 = m ,   v + n 1 + 2 n 2 = n m_1+2m_2=m,\ v+n_1+2n_2=n m1+2m2=m, v+n1+2n2=n
ν \nu ν的取值,也就是积分环节的个数定义为系统型别(0型、Ⅰ型、Ⅱ型等等)。

7.2 系统稳态误差

假设被研究的控制系统是稳定的,得到控制系统的给定稳定误差为:
e s s r = lim ⁡ s → 0 s E ( s ) = lim ⁡ s → 0 s R ( s ) 1 + G k ( s ) = lim ⁡ s → 0 s R ( s ) 1 + K s ν ⋅ G 0 ( s ) e_{ssr}=\lim\limits_{s\to 0}sE(s)=\lim\limits_{s\to 0}\frac{sR(s)}{1+G_k(s)}=\lim\limits_{s\to 0}\frac{sR(s)}{1+\frac{K}{s^{\nu}}·G_0(s)} essr=s0limsE(s)=s0lim1+Gk(s)sR(s)=s0lim1+sνKG0(s)sR(s)

典型参考输入下系统的给定稳定误差和静态误差系数

在这里插入图片描述

7.3 减小或消除稳态误差的措施

(1)比例积分控制
在这里插入图片描述

(2)复合控制
在这里插入图片描述

顺馈控制系统

在这里插入图片描述

前馈控制系统
  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玉辰or雨晨?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值