02-线性系统稳定性及劳斯判据

稳定性

稳定性,是指控制系统在任意足够小的偏差作用下,其过度过程随着时间的推移是否具有逐渐恢复原平衡状态的性能。
当系统受到扰动后,系统最终恢复原平衡状态,即系统输出c(t)逐渐收敛,为系统稳定;当系统受到扰动后,扰动消除,系统的输出c(t)会出现逐渐发散振荡或者等幅振荡,为系统不稳定。

线性系统稳定性判别准则

根据稳定性的定义,系统稳定性与系统的输入无关,是系统的固有特性。由此来推出线性系统稳定性的判别准则。

设线性系统的微分方程:
  a n d n c ( t ) d t n + a n − 1 d n − 1 c ( t ) d t n − 1 + . . . + a 1 d c ( t ) d t + a 0 c ( t ) =   b m d m r ( t ) d t m + b m − 1 d m − 1 r ( t ) d t m − 1 + . . . + b 1 d r ( t ) d t + b 0 r ( t ) \ a_n \frac{d^n c(t)}{dt^n} + a_{n-1} \frac{d^{n-1} c(t)}{dt^{n-1}} +...+a_1 \frac{d c(t)}{dt} +a_0 c(t) \\ = \ b_m \frac{d^m r(t)}{dt^m} + b_{m-1} \frac{d^{m-1} r(t)}{dt^{m-1}} +...+b_1 \frac{d r(t)}{dt} +b_0 r(t)  andtndnc(t)+an1dtn1dn1c(t)+...+a1dtdc(t)+a0c(t)= bmdtmdmr(t)+bm1dtm1dm1r(t)+...+b1dtdr(t)+b0r(t)

c(t)–系统输入;
r(t)–系统输出;
(注:c、r可理解为输"入"、输"出"的汉语拼音首字母)

由于稳定性是研究去掉扰动后系统的运动情况,所以,令
  a n d n c ( t ) d t n + a n − 1 d n − 1 c ( t ) d t n − 1 + . . . + a 1 d c ( t ) d t + a 0 c ( t ) = 0 \ a_n \frac{d^n c(t)}{dt^n} + a_{n-1} \frac{d^{n-1} c(t)}{dt^{n-1}} +...+a_1 \frac{d c(t)}{dt} +a_0 c(t) = 0  andtndnc(t)+an1dtn1dn1c(t)+...+a1dtdc(t)+a0c(t)=0
得到齐次微分方程。
进行拉氏变换可得(初始状态为零):
  a n s n + a n − 1 s n − 1 + . . . + a 1 s + a 0 = 0 \ a_n s^n + a_{n-1} s^{n-1} +...+ a_1 s + a_0 =0  ansn+an1sn1+...+a1s+a0=0
微分方程的解的一般式为:
  c ( t ) = k 1 e s 1 t + k 2 e s 2 t + . . . + k n e s n t \ c(t) = k_1 e^{s_1 t} + k_2 e^{s_2 t} +...+ k_n e^{s_n t} \\  c(t)=k1es1t+k2es2t+...+knesnt
k_1 、k_2、…、k_n --由初始条件决定的积分常数;
s_1、s_2、…、s_n–特征方程的根

这些特征值的根可以是实根也可以是复根,这里设q个实根,2r个复根,满足q + 2r = n
∏ i = 1 q a n ( s − s i ) ∏ j = 1 r [ s − ( σ j + j ω j ) ] [ s − ( σ j − j ω j ) ] = 0 \prod_{i=1}^q a_n (s - s_i) \prod_{j=1}^r [s - (\sigma_j +j\omega_j)] [s - (\sigma_j - j\omega_j)] = 0 i=1qan(ssi)j=1r[s(σj+jωj)][s(σjjωj)]=0
改写成,
y ( t ) = ∑ i = 1 q k i e s i t + ∑ j = 1 r e σ j t ( A j c o s ( ω j t ) + B j s i n ( ω j t ) ) y(t) = \sum_{i=1}^q k_i e^{s_i t} + \sum_{j=1}^r e^{\sigma_j t}(A_j cos(\omega_j t) + B_j sin(\omega_j t)) y(t)=i=1qkiesit+j=1reσjt(Ajcos(ωjt)+Bjsin(ωjt))

系统稳定的充要条件

由上式可得出,
① 如果s_i、σ_j都是负值,那么当t→∞时,c(t)→0,
这说明系统的特征方程的根是负实根或共轭复根具有复实部时,系统在稳态(t→∞)下必然是稳定的。

② 反之,s_i、σ_j都是正值,那么当t→∞时,c(t)→∞,则c(t)是发散的,系统不稳定。

③ 如果特征根的共轭复根的实部σ_j为0,c(t)中包含(A_j cos(ω_j t) + B_j sin(ω_j t)这样的振荡分量,便会出现临界振荡或称为系统临界稳定状态,工程上认为临界振荡也是一种不稳定;

④ 特征根为0,即落在原点处,则c(t)输出中包含常数项,相当于系统偏离平衡状态,所以系统不稳定。

综上,系统稳定性的判别可以归结为系统特征根的判别。系统稳定的充要条件:系统传递函数的特征根全部在[s]平面的左半平面。
在这里插入图片描述

劳斯判据

如果传函为系统的闭环传函,形如
在这里插入图片描述
闭环传递函数:
  G t ( s ) = G ( s ) 1 + G ( s ) H ( s ) \ G_t(s) = \frac{G(s)}{1+G(s)H(s)}  Gt(s)=1+G(s)H(s)G(s)

设控制系统的传递函数G(s)
  G ( s ) = b m s m + b m − 1 s m − 1 + . . . + b 1 s + b 0 a n s n + a n − 1 s n − 1 + . . . + a 1 s + a 0 ( n ≥ m ) \ G(s)=\frac{b_m s^m +b_{m-1} s^{m-1} +...+b_1 s +b_0 }{a_n s^n +a_{n-1} s^{n-1} +...+a_1 s +a_0} (n \geq m)  G(s)=ansn+an1sn1+...+a1s+a0bmsm+bm1sm1+...+b1s+b0(nm)
控制系统的特征方程为分母等于0的方程。

不同类型情况的计算方法

有前面可知,传函的特征方程为
  a n s n + a n − 1 s n − 1 + . . . + a 1 s + a 0 = 0 \ a_n s^n + a_{n-1} s^{n-1} +...+ a_1 s + a_0 =0  ansn+an1sn1+...+a1s+a0=0
这个多项式可以分解成一次因式(s +a)和二次因式(s^2 + bs +c)相乘的形式一次因式给出的是实根,二次因式可得出实根或者共轭复根。
当a、b、c都为正数时,特征方程的根才为负实数或复实部的共轭复数(二次方程的求根公式:x_1_2 =[-b±(b^ 2-4ac)^(1/2)]/2a)。
于是可知,特征多项式的系数a_n必须是正数,才能保证系统稳定(多项式的系数全为负可乘-1,变为正数)。

劳斯稳定性判据的充要条件

①系统特征方程多项式的各项系数均大于零,即a_i > 0;
②劳斯计算表的第一列系数的符号相同(不变号,一般为大于零);
满足以上两个条件则说明系统稳定。

  • 如果系统的s^n存在缺少项,则系统不稳定(结构不稳定)

劳斯计算表

以六阶系统为例,展示劳斯计算表的计算方式:
  a 6 s 6 + a 5 s 5 + a 4 s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 = 0 \ a_6 s^6 + a_5 s^5 +a_4 s^4 +a_3 s^3 +a_2 s^2 + a_1 s + a_0 =0  a6s6+a5s5+a4s4+a3s3+a2s2+a1s+a0=0
在这里插入图片描述

(1)特征方程不缺项

系统的s^n存在缺少项,则系统不稳定(结构不稳定)

(2)第一列数值存在0值

这时可以使用无穷小值 ε 代替0做分母进行计算,在令ε→0时,判断第一列该项数值的符号

例:
  s 5 + 2 s 4 + 3 s 3 + 6 s 2 + 2 s + 1 = 0 判断系统是否稳定,并求出不稳定根的个数 \ s^5 +2 s^4 +3 s^3 +6s^2 + 2s + 1 =0 \\判断系统是否稳定,并求出不稳定根的个数  s5+2s4+3s3+6s2+2s+1=0判断系统是否稳定,并求出不稳定根的个数

s^5      1                      3           2
s^4      2                      6           1
s^3      0(ε)                  3/2
s^2      (6ε - 3)/ε             1       (第一列符号改变一次)
s^1    3/2 - ε^2/(6ε - 3)               (第一列符号改变一次)
s^0     1
---------------------
当ε→0时,(6ε - 3)/ε → -∞ ,3/2 - ε^2/(6ε - 3) → 3/2,故特征值有两个正根。

(3)存在全0行

在劳斯计算表中出现某一行各项全为0,这意味着在[s]平面存在一些对称(大小相等,符号相反)的根,包括实根和共轭复根。此时劳斯计算表由于全0行不能进行计算,这时,可将劳斯计算表全0行的上一行的数值作为系数构成"辅助方程",在对"辅助方程"进行求导,将求导后的系数替代全0行,继续计算。
例:
  s 6 + 2 s 5 + 8 s 4 + 12 s 3 + 20 s 2 + 16 s + 16 = 0 判断系统稳定性 \ s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 =0 判断系统稳定性  s6+2s5+8s4+12s3+20s2+16s+16=0判断系统稳定性

s^6   1      8     20     16
s^5   (2     12    16)
s^5   1      6       8   (化简)
s^4   (2     12     16)
s^4    1      6      8   (化简)
s^3    0      0
------------------
s^3行为全0行,使用s^3行的上一行s^4行的数值构造辅助方程
A(s) = s^4 + 6s^2 + 8
求导得,A'(s) = 4s^3 + 12s,
于是劳斯计算表改写成
------------------
s^6    1      8     20     16
s^5   (2     12     16)
s^5    1      6      8   (化简)
s^4   (2     12     16)
s^4    1      6      8   (化简)
s^3    (4     12)
s^3    1      3           (化简)
s^2    3      8
s^1    1/3
s^0    8

从劳斯计算表可以看出,第一列无符号变换,特征方程系数均大于0 ,但s^3行为全0行说明有共轭复根存在,可通过辅助方程A(s)求出,令 A(s)=0得
s^ 4 + 6s^2 + 8 = 0
解得两对共轭复根,
s 1 , 2 = ± j 2 , s 3 , 4 = ± j 2 s_{1,2} = \pm j\sqrt {2} , s_{3,4} = \pm j 2 s1,2=±j2 ,s3,4=±j2
这两个共轭复根同时还是原特征方程的根,在[s]平面虚轴上,因此该控制系统处于临界振荡状态,为工程的不稳定状态。

  • 另一类问题,类似极点配置

例,D(s) = s^ 3 + 5k s^2 + (2k+3)s +10
(1) 求系统稳定时,k的取值范围;
(2) k取何值时,系统处于振荡状态,并求出角频率;(类似上面求共轭复根)
(3) 使s在[s]平面 Re= -1以左时,求k的范围;(提示:用s = s’ -1代替s,再对s’进行劳斯判据计算)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值