自动控制原理期末复习(Part4根轨迹分析)

本文介绍了根轨迹分析法,一种通过系统开环极点和零点变化来研究闭环系统性能的方法。它展示了如何通过幅值和相角条件绘制根轨迹,以及如何应用这些规则分析系统稳定性、性能指标和参数影响。重点讨论了180°和0°等相角根轨迹的绘制规则,以及其在控制系统的实际应用。
摘要由CSDN通过智能技术生成

本文涉及图片均来自《自动控制原理(第2版)》(清华大学出版社)

第四章 线性系统的根轨迹分析法

通过上一章可以看出,可以利用系统的闭环极点的分布来间接研究控制系统的性能。但对于高阶系统,手动求解闭环特征方程难度极大,而且当系统的参数发生变化时闭环特征根又需要重复计算,还看不出直观的变化趋势。

根轨迹是一种图解分析方法,基本思路是:当开环系统的一个或多个参数发生变化时,根据系统开环零极点,借助若干条绘图准则,绘制出闭环特征根变化的轨迹,简称根轨迹;利用根轨迹法可以分析闭环系统的稳定性,计算或估算闭环系统的瞬态和稳态性能指标,确定闭环系统某些参数对系统性能的影响,以及对闭环系统进行校正等。

一、根轨迹的幅值和相角条件(了解)

依据开环传递函数的零极点形式与时间常数形式( ν \nu ν型系统):
G k ( s ) = k g ∏ j = 1 m ( s + z j ) ∏ i = 1 n ( s + p i ) = K ∏ j = 1 m ( τ j s + 1 ) ∏ i = 1 n ( T i s + 1 ) ,   K = k g ∏ j = 1 m z j ∏ i = 1 n − ν p i G_k(s)=k_g\frac{\prod\limits_{j=1}^m(s+z_j)}{\prod\limits_{i=1}^n(s+p_i)}=K\frac{\prod\limits_{j=1}^m(\tau_js+1)}{\prod\limits_{i=1}^n(T_is+1)},\ K=k_g\frac{\prod\limits_{j=1}^mz_j}{\prod\limits_{i=1}^{n-\nu}p_i} Gk(s)=kgi=1n(s+pi)j=1m(s+zj)=Ki=1n(Tis+1)j=1m(τjs+1), K=kgi=1nνpij=1mzj
若闭环传递函数为: Φ ( s ) = G ( s ) 1 + G ( s ) H ( s ) = G ( s ) 1 + G k ( s ) \Phi(s)=\frac{G(s)}{1+G(s)H(s)}=\frac{G(s)}{1+G_k(s)} Φ(s)=1+G(s)H(s)G(s)=1+Gk(s)G(s)
则闭环特征方程为: 1 + G k ( s ) = 0 1+G_k(s)=0 1+Gk(s)=0
即: k g ∏ j = 1 m ( s + z j ) ∏ i = 1 n ( s + p i ) = − 1 k_g\frac{\prod\limits_{j=1}^m(s+z_j)}{\prod\limits_{i=1}^n(s+p_i)}=-1 kgi=1n(s+pi)j=1m(s+zj)=1
当根轨迹增益变化时,满足上式的对应于所有的 k g k_g kg s s s值就是闭环传递函数的极点,这些极点在 s s s平面上连接而成的图线就是闭环系统的根轨迹,因此也将上式称为负反馈闭环控制系统的根轨迹方程。

k g ≥ 0 k_g\geq0 kg0,此时求解根轨迹方程,可得:
k g ∏ j = 1 m ∣ s + z j ∣ ∏ i = 1 n ∣ s + p i ∣ ⋅ e j [ ∑ j = 1 m ∠ ( s + z j ) − ∑ i = 1 n ∠ ( s + p i ) ] = − 1 k_g\frac{\prod\limits_{j=1}^m|s+z_j|}{\prod\limits_{i=1}^n|s+p_i|}·e^{j\left[\sum\limits_{j=1}^m\angle(s+z_j)-\sum\limits_{i=1}^n\angle(s+p_i)\right]}=-1 kgi=1ns+pij=1ms+zjej[j=1m(s+zj)i=1n(s+pi)]=1
将下面两个式子称为 180 ° 180\degree 180°等相角根轨迹的幅值和相角条件:
k g ∏ j = 1 m ∣ s + z j ∣ ∏ i = 1 n ∣ s + p i ∣ = 1 (a) k_g\frac{\prod\limits_{j=1}^m|s+z_j|}{\prod\limits_{i=1}^n|s+p_i|}=1\tag{a} kgi=1ns+pij=1ms+zj=1(a)
∑ j = 1 m ∠ ( s + z j ) − ∑ i = 1 n ∠ ( s + p i ) = ( 2 k + 1 ) π ,   k = 0 , ± 1 , … (b) \sum\limits_{j=1}^m\angle(s+z_j)-\sum\limits_{i=1}^n\angle(s+p_i)=(2k+1)\pi,\ k=0,\pm 1,\dots\tag{b} j=1m(s+zj)i=1n(s+pi)=(2k+1)π, k=0,±1,(b)
同理,可以写出 k g ≤ 0 k_g\leq0 kg0时求解根轨迹方程的结果。
将下面两个式子称为 0 ° 0\degree 0°等相角根轨迹的幅值和相角条件:
∣ k g ∣ ∏ j = 1 m ∣ s + z j ∣ ∏ i = 1 n ∣ s + p i ∣ = 1 (c) |k_g|\frac{\prod\limits_{j=1}^m|s+z_j|}{\prod\limits_{i=1}^n|s+p_i|}=1\tag{c} kgi=1ns+pij=1ms+zj=1(c)
∑ j = 1 m ∠ ( s + z j ) − ∑ i = 1 n ∠ ( s + p i ) = 2 k π ,   k = 0 , ± 1 , … (d) \sum\limits_{j=1}^m\angle(s+z_j)-\sum\limits_{i=1}^n\angle(s+p_i)=2k\pi,\ k=0,\pm 1,\dots\tag{d} j=1m(s+zj)i=1n(s+pi)=2kπ, k=0,±1,(d)

二、绘制根轨迹的基本规则

记住下表

规则180°等相角根轨迹0°等相角根轨迹
起点和终点起始于开环极点,终止于开环零点(包括无穷远点)同左
实轴上根轨迹实轴某点右侧开环有限零点和有限极点数目之和为奇数,则该点是根轨迹上的点实轴某点右侧开环有限零点和有限极点数目之和偶数(包括0),则该点是根轨迹上的点
渐近线条数 n − m n-m nm同左
渐近线与实轴交点 s = − σ = − ∑ i = 1 n p i − ∑ j = 1 m z j n − m s=-\sigma=-\frac{\sum\limits_{i=1}^np_i-\sum\limits_{j=1}^mz_j}{n-m} s=σ=nmi=1npij=1mzj同左
渐近线与实轴夹角 ϕ = ( 2 k + 1 ) π n − m \phi=\frac{(2k+1)\pi}{n-m} ϕ=nm(2k+1)π ϕ = 2 k π n − m \phi=\frac{2k\pi}{n-m} ϕ=nm2kπ
分离汇合点求解方程 N ′ D − N D ′ = 0 N'D-ND'=0 NDND=0 ∑ i = 1 n 1 s + p i = ∑ j = 1 m 1 s + z j \sum\limits_{i=1}^n\frac{1}{s+p_i}=\sum\limits_{j=1}^m\frac{1}{s+z_j} i=1ns+pi1=j=1ms+zj1,其中 N ( s ) = ∏ j = 1 m ( s + z j ) ,   D ( s ) = ∏ i = 1 n ( s + p i ) N(s)=\prod\limits_{j=1}^m(s+z_j),\ D(s)=\prod\limits_{i=1}^n(s+p_i) N(s)=j=1m(s+zj), D(s)=i=1n(s+pi)同左
分离汇合点处的根轨迹增益 k g d = − D ( s ) N ( s ) = − D ′ ( s ) N ′ ( s ) k_{gd}=-\frac{D(s)}{N(s)}=-\frac{D'(s)}{N'(s)} kgd=N(s)D(s)=N(s)D(s)同左
出射角 θ p k = π + ∑ j = 1 m ∠ ( − p k + z j ) − ∑ i = 1 , i ≠ k n ∠ ( − p k + p i ) \theta_{p_k}=\pi+\sum\limits_{j=1}^m\angle(-p_k+z_j)-\sum\limits_{i=1,i\not=k}^n\angle(-p_k+p_i) θpk=π+j=1m(pk+zj)i=1,i=kn(pk+pi) θ p k = ∑ j = 1 m ∠ ( − p k + z j ) − ∑ i = 1 , i ≠ k n ∠ ( − p k + p i ) \theta_{p_k}=\sum\limits_{j=1}^m\angle(-p_k+z_j)-\sum\limits_{i=1,i\not=k}^n\angle(-p_k+p_i) θpk=j=1m(pk+zj)i=1,i=kn(pk+pi)
入射角 θ z k = π − ∑ j = 1 , j ≠ k m ∠ ( − z k + z j ) + ∑ i = 1 n ∠ ( − z k + p i ) \theta_{z_k}=\pi-\sum\limits_{j=1,j\not=k}^m\angle(-z_k+z_j)+\sum\limits_{i=1}^n\angle(-z_k+p_i) θzk=πj=1,j=km(zk+zj)+i=1n(zk+pi) θ z k = − ∑ j = 1 , j ≠ k m ∠ ( − z k + z j ) + ∑ i = 1 n ∠ ( − z k + p i ) \theta_{z_k}=-\sum\limits_{j=1,j\not=k}^m\angle(-z_k+z_j)+\sum\limits_{i=1}^n\angle(-z_k+p_i) θzk=j=1,j=km(zk+zj)+i=1n(zk+pi)
与虚轴的交点 s = j ω s=j\omega s=jω,代入闭环特征方程求 ω \omega ω k g k_g kg;或用劳斯判据求临界稳定时的闭环特征根 s = j ω s=j\omega s=jω,代入闭环特征方程求 ω \omega ω k g k_g kg;或用劳斯判据求临界稳定时的闭环特征根

三、基于根轨迹法的系统性能分析

增加开环零极点对根轨迹的影响

  1. 控制系统增加开环零点,通常使根轨迹向左移动或弯曲,使系统更加稳定,系统的瞬态过程时间缩短,超调量减小。
  2. 控制系统增加开环极点,通常使根轨迹向右移动或弯曲,使系统的稳定性降低,系统的瞬态过程时间增加,超调量以及振荡激烈程度由系统的主导极点决定。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玉辰or雨晨?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值