一、原理概述
正太分布配准算法是一种应用了三维点统计模型的算法,它使用了标准最优化技术来确定两个点云间的最优匹配,由于大多数扫描匹配算法需要找到所使用特征之间的对应关系,因此其计算时间往往较长。而NDT由于它在匹配过程中不需要利用对应点的特征计算和匹配操作,所以其时间计算效率较为可观,适合处理大型的点云数据的配准处理。具体的算法过程如下所示:
(1)计算目标点云的正态分布,方法是将点云扫描覆盖的区域划分为大小相同的“体素”。每个体素包含一组点。该算法计算每个体素中点的均值和协方差矩阵。
(2)以初始变换为基础,该算法将源点云与目标点云进行对齐。然后,它根据目标点云正态分布,找到位于点周围体素(在源点云中)的每个对齐点的统计似然之和。
(3)为了改进配准,该算法最大化源点云在目标点云正态分布上的概率得分。这是通过迭代优化角度和平移估计来实现的。
(4)使用上一步新的转换重复源点云与目标点云的对齐过程,然后重复优化。当满足最大迭代次数或精度阈值时,算法停止。这个精度阈值是角度和平移估计从一次迭代到另一次迭代变化的度量。
更为详细的内容可以详看参考文献。
二、实现过程
相关插件式开发