CloudCompare&PCL NDT点云精配准

192 篇文章 1011 订阅 ¥19.90 ¥99.00
本文介绍了NDT(正太分布变换)点云配准算法的原理,包括体素划分、概率得分最大化等步骤,并详细阐述了在CloudCompare中通过插件实现该算法的过程,涉及UI文件和插件源码。同时展示了配准前后的效果。
摘要由CSDN通过智能技术生成

一、原理概述

正太分布配准算法是一种应用了三维点统计模型的算法,它使用了标准最优化技术来确定两个点云间的最优匹配,由于大多数扫描匹配算法需要找到所使用特征之间的对应关系,因此其计算时间往往较长。而NDT由于它在匹配过程中不需要利用对应点的特征计算和匹配操作,所以其时间计算效率较为可观,适合处理大型的点云数据的配准处理。具体的算法过程如下所示:
(1)计算目标点云的正态分布,方法是将点云扫描覆盖的区域划分为大小相同的“体素”。每个体素包含一组点。该算法计算每个体素中点的均值和协方差矩阵。
(2)以初始变换为基础,该算法将源点云与目标点云进行对齐。然后,它根据目标点云正态分布,找到位于点周围体素(在源点云中)的每个对齐点的统计似然之和。
(3)为了改进配准,该算法最大化源点云在目标点云正态分布上的概率得分。这是通过迭代优化角度和平移估计来实现的。
(4)使用上一步新的转换重复源点云与目标点云的对齐过程,然后重复优化。当满足最大迭代次数或精度阈值时,算法停止。这个精度阈值是角度和平移估计从一次迭代到另一次迭代变化的度量。
更为详细的内容可以详看参考文献。

二、实现过程

相关插件式开发

pcl_ndt和icp都是点云配准算法,用于将两个或多个点云数据集对齐。然而,它们在配准度和速度上有一些差异。 首先,pcl_ndt是一种粗配准算法,其中"ndt"代表正态分布变换。它通过对点云数据进行统计建模来估计刚体变换(旋转和平移)以对齐点云。该算法使用高斯分布来近似点云数据的概率密度函数,并使用迭代的方法来最小化点云之间的差异。它能够处理较大的初始误差,并在模糊或噪声较多的场景中表现良好。然而,由于粗匹配,它可能无法处理高度的点云配准任务。 相比之下,icp是一种细的配准算法,即迭代最近点算法。它通过寻找两个点云中最接近的点对来计算刚体变换,以最小化它们之间的误差。该算法重复执行以下步骤:计算最近点对、计算最优刚体变换、更新刚体变换,直到收敛为止。icp算法的优点是它能够在相对低的误差水平下获得高度的配准结果,但对于大的误差起始配准,可能会陷入局部最优。 综上所述,pcl_ndt适用于粗配准任务,能够处理较大的初始误差和噪声,但对于高度的点云配准可能不够准确。而icp适用于配准任务,能够获得高度的配准结果,但对于大的误差起始配准可能会受局部最优问题的影响。对于具体的应用场景,我们可以根据需求选择合适的算法来进行点云配准
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大鱼BIGFISH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值