艾森斯坦判别法

内容:
设f(x)=an·x^n+…+a1·x+a0
若存在素数p满足以下条件:
1、p整除f(x)中an以外的其他所有系数
2、p^2不整除a0
则f(x)在有理数域上不可约

证明:
反证法
设上述p存在,f(x)在有理数域上可约,且f(x)= g(x) ·h(x)
g(x)= bl·x^l+…+b1·x+b0(整系数多项式)
h(x)= cm·x^m+…+c1·x+c0(整系数多项式)
f(x)= (bl·x^ l+…+b1·x+b0)·(cm·x^m+…+c1·x+c0)
1<=l,m<n
p !| an
p | (a(n-1),…,a0)
p^2 !| a0

f(x)中x^k的系数为Sum(bi·cj),i+j=k,且0<=i<=l,0<=j<=m
易得
a0=b0·c0
an=bl·cm
由p | a0,p^2 !| a0
可得
p | b0且p !| c0
或 p | c0且p !| b0

设p | b0且p !| c0

下面证明p !| (bl,…,b0)
反证法
若p | (bl,…,b0)
则有
整系数多项式r(x)=p·(g(x) / p)=p·(rl·x^l+…+r1·x+r0),ri=bi / p
f(x)= p·r(x) ·h(x)(提示:r(x) ·h(x)为整系数多项式)
p | (an,…,a0)与条件矛盾
所以有p !| (bl,…,b0)

设从b0到bl第一个不能被p整除的是bk(2<=k<=l)
ak=c0·bk+…+c(t)·b(k-t)(m>=k,t取k,否则t取m)
因为
k<=l<n
p | (a(n-1),…,a0)
所以有
p | ak
又因为
p | (b(k-1),…,b(k-t))
所以有
p | c0·bk
由p !| bk
可推出p | c0,p^2 | a0
与假设矛盾
证毕

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值