Llama-2 推理和微调的硬件要求总结:RTX 3080 就可以微调最小模型

文章探讨了如何在消费级GPU上微调大语言模型,如Llama-2,以及推荐的硬件配置(如VRAM大小)和性能考虑。测试表明7B模型在3080(8G)上运行,但深度研究仍需专业硬件。文章还提供了不同模型所需的最小VRAM和推理速度参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大语言模型微调是指对已经预训练的大型语言模型(例如Llama-2,Falcon等)进行额外的训练,以使其适应特定任务或领域的需求。微调通常需要大量的计算资源,但是通过量化和Lora等方法,我们也可以在消费级的GPU上来微调测试,但是消费级GPU也无法承载比较大的模型,经过我的测试,7B的模型可以在3080(8G)上跑起来,这对于我们进行简单的研究是非常有帮助的,但是如果需要更深入的研究,还是需要专业的硬件。

我们先看看硬件配置:

亚马逊的g3.xlarge M60是8GB的VRAM和2048个CUDA内核。3080是10Gb的GDDR6 VRAM,这两个GPU基本类似。

这里做的测试是使用一个小的(65MB文本)自定义数据集上微调lama-2 - 7b (~7GB)。

可以看到3080非常耗电,训练时最大耗电364瓦(PC总耗电超过500瓦)。

看看训练的记录

说明训练是ok的,能够完整的进行训练

为了验证内存消耗,我又在8G 的M60上跑了一遍,也是没问题的,这应该是GPU内存的极限了。

占用的差不多7.1G的内存,再多一些可能就不行了,不过还好,将就够用。

最后我们再整理个列表,大概看看各个模型都需要什么样的内存,以下只是推理,不包括微调,如果使用微调,大概需要再加20%(LORA)。

LLaMA-7B

建议使用至少6GB VRAM的GPU。适合此模型的GPU示例是RTX 3060,它提供8GB VRAM版本。

LLaMA-13B

建议使用至少10GB VRAM的GPU。满足此要求的gpu包括AMD 6900 XT、RTX 2060 12GB、3060 12GB、3080和A2000。这些gpu提供了必要的VRAM容量来有效地处理LLaMA-13B的计算需求。

LLaMA-30B

建议使用VRAM不低于20GB的GPU。RTX 3080 20GB、A4500、A5000、3090、4090、6000或Tesla V100都是提供所需VRAM容量的gpu示例。这些gpu为LLaMA-30B提供了高效的处理和内存管理。

LLaMA-65B

LLaMA-65B在与至少具有40GB VRAM的GPU。适合此型号的gpu示例包括A100 40GB, 2x3090, 2x4090, A40, RTX A6000或8000。

对于速度来说:

我是用RTX 4090和Intel i9-12900K CPU的推理速度示例

对于CPU来说,LLaMA也是可以用的,但是速度会很慢,而且最好不要进行训练,只能进行推理,下面是,13B模型在不同CPU上推理速度列表

各个系统的配置和性能可能会有所不同。最好对不同的设置进行实验和基准测试,以找到最适合您特定需求的解决方案,上面的测试仅供参考。

https://avoid.overfit.cn/post/0dd29b9a89514a988ae54694dccc9fa6

### 不同DeepSeek模型的核心功能、适用场景及优缺点 DeepSeek 是一系列基于 Transformer 的大型语言模型,旨在提供高性能的语言理解生成能力。以下是几种主要的 DeepSeek 模型及其核心功能、适用场景以及各自的优缺点。 #### 1. **DeepSeek-Large** - **核心功能**: 这一版本提供了强大的基础性能,在多种自然语言处理任务上表现出色,例如文本分类、情感分析问答系统[^1]。 - **适用场景**: 主要用于学术研究技术开发环境下的通用 NLP 应用程序。适合需要高精度但计算资源有限的情况。 - **优点**: - 较低的成本运行复杂任务; - 能够快速适应新领域的小样本学习需求; - 更好的泛化能力鲁棒性。 - **缺点**: - 对于极端复杂的多模态任务可能表现不足; - 需要进一步优化才能达到最佳效果。 #### 2. **DeepSeek-Max** - **核心功能**: 提供更高的参数量支持更大的训练数据集,从而增强了其在大规模语料库上的理解力与创造力。 - **适用场景**: 广泛应用于创意写作、高级对话代理等领域,尤其适用于那些对响应质量有极高要求的应用场合。 - **优点**: - 极高的表达能力灵活性; - 可以更好地捕捉细微差别并生成更高质量的内容; - 支持更多样化的输入形式(如表格、图片描述等)。 - **缺点**: - 计算开销较大,部署成本较高; - 存储空间占用较多。 #### 3. **DeepSeek-NL** - **核心功能**: 特别针对特定国家或地区的本地化需求设计而成,能够很好地支持当地语言特性及相关文化背景的知识检索服务供给[^3]。 - **适用场景**: 常见于国际化企业内部沟通工具定制化解决方案或者跨国电商平台客户服务自动化流程构建当中。 - **优点**: - 出色的文化敏感度区域适配水平; - 显著提升了跨文化交流效率的同时降低了误解风险; - 用户体验更加贴近实际生活情境。 - **缺点**: - 如果目标市场范围过广,则难以全面覆盖所有细节差异; - 更新维护频率需保持高位以免落后于最新趋势变化。 ```python import deepseek as ds # Example usage of a DeepSeek model for text generation. model = ds.Model('deepseek-max') output = model.generate("Write an essay about artificial intelligence.", max_length=500) print(output) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值