LLM2CLIP:使用大语言模型提升CLIP的文本处理,提高长文本理解和跨语言能力

在人工智能迅速发展的今天,多模态系统正成为推动视觉语言任务前沿发展的关键。CLIP(对比语言-图像预训练)作为其中的典范,通过将文本和视觉表示对齐到共享的特征空间,为图像-文本检索、分类和分割等任务带来了革命性突破。然而其文本编码器的局限性使其在处理复杂长文本和多语言任务时显得力不从心。

大型语言模型(LLM),如 GPT-4LLaMA,则展示了卓越的语言理解和生成能力。这种强大的语言能力能否与 CLIP 结合,解决其文本编码器的短板?微软团队提出的 LLM2CLIP 框架便是这一创新的成果。

该论文提出了一种创新的方法,通过将 LLM 强大的语言知识与 CLIP 的视觉能力相结合,显著提升多模态任务的性能。通过整合 LLM 和 CLIP,LLM2CLIP 解决了传统 CLIP 在文本理解、语言支持和任务泛化方面的瓶颈。

方法创新

字幕对比微调(Caption Contrastive Fine-tuning)

  • 核心问题:LLM 的原生文本特征缺乏区分性,难以直接用于多模态任务。
  • 创新点:通过监督对比损失函数,将同一图像的字幕作为正样本,将其他字幕作为负样本,从而显著增强 LLM 的文本编码能力。

冻结 LLM 梯度

  • 目的:保留 LLM 的开放世界知识,降低计算成本。
  • 方法:仅微调适配器和投影层,实现多模态对齐。

高效训练策略

  • 使用 LoRA 技术进行轻量级训练,在计算资源有限的情况下优化模型性能。
  • 预提取文本特征,减少推理阶段的计算负担。

开放世界知识的利用

  • LLM 的广泛训练语料使其能够处理复杂字幕,甚至支持多语言任务。

LLM2CLIP 的关键特性

  1. 增强文本理解:LLM2CLIP 能够处理超过 CLIP 原生限制的长文本和复杂描述。
  2. 跨语言支持:通过 LLM 的知识迁移,即使仅使用英语数据训练,仍可在中文等多语言任务中实现卓越表现。
  3. 高效计算:通过冻结梯度和轻量级适配器优化计算开销。

详细改进描述

处理长字幕和复杂文本: LLM 的更大的上下文窗口和更强的语言理解能力使得 LLM2CLIP 能够有效地处理长字幕和复杂文本,而无需像之前的工作那样进行文本截断或分段。

融入开放世界知识: LLM 在大规模文本语料库上进行预训练,因此拥有丰富的开放世界知识。LLM2CLIP 将这些知识融入到 CLIP 的视觉表示中,从而提高了其在各种下游任务中的性能。

跨语言能力: LLM2CLIP 的跨语言能力使其成为构建多语言多模态系统的强大工具,无需为每种语言单独训练模型。

高效训练: 通过冻结 LLM 的权重和预先提取文本特征,LLM2CLIP 的训练成本与微调原始 CLIP 模型相当。

实验结果

结果展示

LLM2CLIP 在多个基准测试中表现优异,在短文本、长文本以及跨语言任务中的性能显著提升,尤其在中文任务中,其表现甚至超越了专用中文数据集训练的模型。

  • 图像-文本检索 (I2T 和 T2I): 在 Flickr30k、COCO、ShareGPT4V、Urban-1k 和 DOCCI 等数据集上进行评估。
  • 跨语言图像-文本检索: 在 Flickr30K-CN 和 COCO-CN 数据集上进行评估。
  • 视觉问答 (VQA): 使用 LLaVA 1.5 框架进行评估。
  • 字幕检索准确率 (CRA): 用于评估文本模型区分字幕的能力。

如何开始使用 LLM2CLIP

以下是快速上手 LLM2CLIP 的完整代码教程:

1. 安装依赖环境

 pip install llm2vec
 git clone https://github.com/microsoft/LLM2CLIP.git && cd LLM2CLIP
 pip install -r requirements.txt

2. 配置 Jupyter Notebook

如果需要交互式环境:

 conda install -c conda-forge --override-channels notebook
 conda install -c conda-forge --override-channels ipywidgets -y jupyter notebook

3. 导入必要库

 fromPILimportImage
 fromtransformersimportAutoModel, AutoConfig, AutoTokenizer
 fromtransformersimportCLIPImageProcessor
 importtorch
 fromllm2vecimportLLM2Vec

4. 加载模型

 # 图像处理器
 processor=CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14-336")
 
 # 加载 CLIP 模型
 model_name_or_path="microsoft/LLM2CLIP-Openai-L-14-336"
 model=AutoModel.from_pretrained(
     model_name_or_path,
     torch_dtype=torch.float16,
     trust_remote_code=True
 ).to('cuda').eval()
 
 # 加载微调后的 LLM 模型
 llm_model_name='microsoft/LLM2CLIP-Llama-3-8B-Instruct-CC-Finetuned'
 config=AutoConfig.from_pretrained(llm_model_name, trust_remote_code=True)
 llm_model=AutoModel.from_pretrained(llm_model_name, config=config, trust_remote_code=True)
 tokenizer=AutoTokenizer.from_pretrained(llm_model_name)
 
 # 初始化 LLM2Vec
 l2v=LLM2Vec(llm_model, tokenizer, pooling_mode="mean", max_length=512, doc_max_length=512)

5. 图像和字幕预处理

 captions= ["a diagram", "a dog", "horses"]
 image_path="path_to_image/horses.png"
 
 image=Image.open(image_path)
 input_pixels=processor(images=image, return_tensors="pt").pixel_values.to('cuda')

6. 提取特征并匹配字幕

 withtorch.no_grad(), torch.cuda.amp.autocast():
     image_features=model.get_image_features(input_pixels)
     text_features=l2v.encode(captions, convert_to_tensor=True).to('cuda')
     text_features=model.get_text_features(text_features)
 
     # 归一化特征
     image_features/=image_features.norm(dim=-1, keepdim=True)
     text_features/=text_features.norm(dim=-1, keepdim=True)
 
     # 计算匹配概率
     text_probs= (100.0*image_features@text_features.T).softmax(dim=-1)
 
 print("匹配结果:", text_probs)

输入图像为上面的马照片时,输出为:

 匹配结果: tensor([[3.425e-08, 1.0911e-06, 1.000e+00]], device='cuda:0')

这表明模型预测图像对应的字幕为“horses”,匹配概率为 100%。

再试一张更复杂的图片:

 captions = ["a sunset over a mountain range", "a group of people hiking on a trail", "a peaceful lake surrounded by trees"]
 image_path = "hiking_trail.jpg"
 
 image = Image.open(image_path)
 input_pixels = processor(images=image, return_tensors="pt").pixel_values.to('cuda')
 
 with torch.no_grad(), torch.cuda.amp.autocast():
     image_features = model.get_image_features(input_pixels)
     text_features = l2v.encode(captions, convert_to_tensor=True).to('cuda')
     text_features = model.get_text_features(text_features)
 
     image_features /= image_features.norm(dim=-1, keepdim=True)
     text_features /= text_features.norm(dim=-1, keepdim=True)
 
     text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
 
 print("Label probs:", text_probs)

输出为:

 匹配结果:: tensor([[1.122e-06, 9.998e-01, 1.243e-04]], device='cuda:0')

模型可以匹配出更准确的文字。

总结

LLM2CLIP 为多模态学习提供了一种新的范式,通过整合 LLM 的强大功能来增强 CLIP 模型。其在图像-文本检索、跨语言应用和长文本理解方面的出色性能,突显了其作为构建更强大、更通用的多模态系统的潜力。未来的研究可以进一步探索 LLM2CLIP 在更广泛的应用场景中的潜力,例如视频理解、多模态对话和具身智能。

论文地址:

https://avoid.overfit.cn/post/1ce67e3778c64bf2919b19dae39c4d71

<think>嗯,用户现在问的是大模型大语言模型的关系。之前他们问过传统AI通用AI的区别,可能现在想深入了解当前AI发展的具体技术。首先,我需要确认这两个术语的定义,以及它们之间的联系区别。大模型通常指参数量巨大的深度学习模型,比如GPT-3、BERT这些,而大语言模型则是大模型中的一个子类,专注于处理自然语言任务。 用户可能想知道这两者是不是同一个东西,或者有什么层次上的不同。需要明确大模型包括但不限于语言模型,比如还有大视觉模型之类的。然后要举例说明,比如大语言模型如GPT-4,而大模型可能还包括其他类型,比如图像生成的Stable Diffusion,虽然参数量可能不如语言模型大,但也可以算作大模型的一种。 接下来要分析它们的联系,比如大语言模型属于大模型的一部分,都依赖于大量数据算力,结构上可能都基于Transformer等架构。区别方面,大模型的应用范围广,而大语言模型专注于文本任务。可能还需要提到训练数据的不同,大语言模型需要大量文本数据,而其他大模型可能需要图像、视频等多模态数据。 还要考虑用户可能的实际应用场景,比如他们是否在选型或者研究方向上有需求。可能需要举例说明实际应用,比如大语言模型用于聊天机器人,而大模型中的其他类型用于图像识别等。同时,提到当前趋势,如多模态大模型的发展,说明大模型不仅仅局限于语言,但大语言模型是目前最成熟的应用之一。 此外,用户可能对技术细节感兴趣,比如参数规模、训练方法,或者两者在实现上的异同。需要解释清楚,比如大语言模型通常采用自监督学习,通过预测下一个词来训练,而其他大模型可能使用不同的训练策略。同时,可以提到像GPT-3这样的模型既是大的,又是专注于语言的,所以同时属于两者。 最后,总结两者的关系,强调包含与被包含的关系,并指出未来的发展方向,比如大模型向多模态扩展,而大语言模型作为其中的重要组成部分继续演进。需要确保语言通俗易懂,避免过多专业术语,但又要准确无误。可能还需要检查是否有常见的误解,比如认为大模型就是大语言模型,这时候需要澄清两者的区别。</think>以下是关于**大模型**与**大语言模型**关系的分析: --- ### **1. 定义与范围** - **大模型(Large Model)** 指参数量庞大(通常达十亿级以上)、依赖海量数据训练的深度学习模型,**不限定任务类型**。例如: - 图像领域:DALL·E、Stable Diffusion(文生图大模型) - 多模态领域:GPT-4V(支持图文交互) - 科学计算:AlphaFold(蛋白质结构预测) - **大语言模型(Large Language Model, LLM)** 特指专注于**自然语言处理(NLP)**的大模型,通过文本数据训练,核心能力理解生成人类语言。例如: - GPT-4、ChatGPT - LLaMA、PaLM - 文心一言、通义千问 --- ### **2. 核心关系** - **包含关系**:大语言模型是大模型的子集,所有LLM都属于大模型,但大模型不一定是语言模型(可能是视觉、多模态等)。 - **技术共性**: - 均基于Transformer架构 - 依赖超大规模算力(GPU集群训练) - 使用自监督学习(如语言模型的“下一个词预测”) --- ### **3. 关键差异** | **维度** | **大模型** | **大语言模型** | |----------------|--------------------------------|--------------------------------| | **任务类型** | 跨模态(语言、图像、音频等) | 专注自然语言处理 | | **训练数据** | 多模态数据(文本+图像+视频等) | 纯文本语料库 | | **输出形式** | 多样化(文本、图像、代码等) | 文本生成(对话、翻译、摘要等) | | **典型应用** | 文生图、视频理解、蛋白质预测 | 智能客服、内容创作、代码生成 | --- ### **4. 能力扩展路径** - **大语言模型多模态大模型**: 通过添加视觉编码器(如CLIP)或跨模态对齐技术,将LLM升级为支持图文交互的模型(如GPT-4V)。 - **大模型 → 领域专业化**: 在大模型基础上微调,适配医疗、法律等垂直领域(如BioBERT用于生物医学文本分析)。 --- ### **5. 当前趋势** - **大语言模型主导地位**:由于语言作为人类知识的核心载体,LLM成为大模型中最成熟的赛道。 - **大模型多模态化**:GPT-4o、Gemini等模型正融合语言、视觉、音频能力,向“全能型AI”演进。 - **规模与效率平衡**:出现“小参数大模型”(如Phi-3),在保持性能的同时降低算力需求。 --- ### **总结** 大语言模型是大模型技术在自然语言领域的集中体现,而大模型涵盖广泛的智能形态。两者共同推动AI从**单一任务**向**通用能力**进化,但LLM仍是现阶段最接近实际应用的核心方向。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值