YOLO(You Only Look Once)系列算法原理
前言 :详细介绍了yolo系列目标检测算法的原理和发展过程。
系列:
【YOLO系列】YOLO.v1算法原理详解
【YOLO系列】YOLO.v2算法原理详解
【YOLO系列】YOLO.v3算法原理详解
【YOLO系列】YOLO.v4 & YOLO.v5算法原理详解
文章目录
1. YOLO.v1
1.1 基本概述
论文参考:You only look once unified real-time object detection
yolov1 是使用 one-stage 方法进行目标检测。核心思想是把目标检测问题处理成回归问题。
输入图像通过一个卷积神经网络,直接输出最终预测框位置和类别(概率)。
1.2 算法流程
整个YOLO检测系统如下图所示。
-
假设网络实现的预测类别数为 C 个
论文中使用 PASCAL VOC数据集,C=20,即实现20类别物品的目标检测;
-
输入图像首先被 resize 到指定尺寸
论文中将输入图像统一调整到 448 × \times × 448 ;
即网络输入: 448 × 448 × 3 448\times 448 \times 3 448×448×3 ;
-
对图像进行划分,共划分 S × S S\times S S×S 个方格(即grid),
论文中 S=7, 即共划分 7 × 7 = 49 7\times 7=49 7×7=49个方格 ;
每个方格包含 64 × 64 64\times 64 64×64 个像素点 ;
-
针对每个方格grid,
-
生成 C 个类别目标的概率分数(表示该方格是否存在该目标的概率),用 p 表示。
-
生成 B 个检测框(即bbox, 用于检测目标),每个检测框共 5 个参数 ( x , y , w , h , c ) (x,y,w,h,c) (x,y,w,h,c) 。
使用 ( x , y ) (x, y)
-