【YOLO系列】YOLO.v1算法原理详解

YOLO(You Only Look Once)系列算法原理

前言 :详细介绍了yolo系列目标检测算法的原理和发展过程。

系列:
【YOLO系列】YOLO.v1算法原理详解
【YOLO系列】YOLO.v2算法原理详解
【YOLO系列】YOLO.v3算法原理详解
【YOLO系列】YOLO.v4 & YOLO.v5算法原理详解

1. YOLO.v1

1.1 基本概述

论文参考:You only look once unified real-time object detection

yolov1 是使用 one-stage 方法进行目标检测。核心思想是把目标检测问题处理成回归问题。

输入图像通过一个卷积神经网络,直接输出最终预测框位置和类别(概率)。

1.2 算法流程

整个YOLO检测系统如下图所示。

在这里插入图片描述

  • 假设网络实现的预测类别数为 C 个

    论文中使用 PASCAL VOC数据集,C=20,即实现20类别物品的目标检测;

  • 输入图像首先被 resize 到指定尺寸

    论文中将输入图像统一调整到 448 × \times × 448 ;

    即网络输入: 448 × 448 × 3 448\times 448 \times 3 448×448×3

  • 对图像进行划分,共划分 S × S S\times S S×S 个方格(即grid),

    论文中 S=7, 即共划分 7 × 7 = 49 7\times 7=49 7×7=49个方格 ;

    每个方格包含 64 × 64 64\times 64 64×64 个像素点 ;

  • 针对每个方格grid,

    • 生成 C 个类别目标的概率分数(表示该方格是否存在该目标的概率),用 p 表示。

    • 生成 B 个检测框(即bbox, 用于检测目标),每个检测框共 5 个参数 ( x , y , w , h , c ) (x,y,w,h,c) (x,y,w,h,c)

      使用 ( x , y ) (x, y)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值