YOLO(You Only Look Once)系列算法原理
前言 :详细介绍了yolo系列目标检测算法的原理和发展过程。
系列:
【YOLO系列】YOLO.v1算法原理详解
【YOLO系列】YOLO.v2算法原理详解
【YOLO系列】YOLO.v3算法原理详解
【YOLO系列】YOLO.v4 & YOLO.v5算法原理详解
2. YOLO.v2
2.1 基本概述
论文参考:YOLO9000: Better, Faster, Stronger
yolo v1虽然简单便捷,但检测效果较差,相较于FRCNN和SSD,其性能有所不及。
而 yolo v2 作为 v1 的接续,在原有基础上,做出了很多改进,从而实现了更好、更快、更强悍的目标检测性能,开始迎头赶上FRCNN,SSD网络。
2.2 算法改进
2.2.0 网络架构
yolo v2整体网络架构如下所示
2.2.1 Batch Normalization
v1
- 使用了 dropout 技巧,防止过拟合
v2
- 删去 dropout,增加 Batch Normalization
- BN 操作增加在卷积之后,激活层之前。该操作大大增加收敛速度,防止过拟合、梯度消失。
Batch-Normalization
- 对批样本的输出特征量分别进行归一化处理,分别使得每个特征数据均值为0,方差为1。该步骤不需要引入任何额外参数。
- 对上一步输出做线性变换,即 Z ′ = α Z + β Z' = \alpha Z+\beta Z′=αZ+β。这里的 α , β \alpha ,\beta α,β 是可训练的参数。该步骤是尝试恢复原本信息。
说明
- BN操作现在已经成了目标检测网络的标配。
- 该方法使得mAP提升了2%。
2.2.2 High Resolution Classifier
v1
- 采用 224 × 224 224\times 224 224×224 图像训练网络,采用 448 × 448 448\times 448 448×448 图像进行检测
v2
- 采用 224 × 224 224\times 224 224×224 图像进行预训练,再使用 448 ×