【YOLO系列】YOLO.v2算法原理详解

YOLO(You Only Look Once)系列算法原理

前言 :详细介绍了yolo系列目标检测算法的原理和发展过程。

系列:
【YOLO系列】YOLO.v1算法原理详解
【YOLO系列】YOLO.v2算法原理详解
【YOLO系列】YOLO.v3算法原理详解
【YOLO系列】YOLO.v4 & YOLO.v5算法原理详解

2. YOLO.v2

2.1 基本概述

论文参考:YOLO9000: Better, Faster, Stronger

yolo v1虽然简单便捷,但检测效果较差,相较于FRCNN和SSD,其性能有所不及。

而 yolo v2 作为 v1 的接续,在原有基础上,做出了很多改进,从而实现了更好、更快、更强悍的目标检测性能,开始迎头赶上FRCNN,SSD网络。

2.2 算法改进

2.2.0 网络架构

yolo v2整体网络架构如下所示

在这里插入图片描述

2.2.1 Batch Normalization

v1

  • 使用了 dropout 技巧,防止过拟合

v2

  • 删去 dropout,增加 Batch Normalization
  • BN 操作增加在卷积之后,激活层之前。该操作大大增加收敛速度,防止过拟合、梯度消失。

Batch-Normalization

  • 对批样本的输出特征量分别进行归一化处理,分别使得每个特征数据均值为0,方差为1。该步骤不需要引入任何额外参数。
  • 对上一步输出做线性变换,即 Z ′ = α Z + β Z' = \alpha Z+\beta Z=αZ+β。这里的 α , β \alpha ,\beta α,β 是可训练的参数。该步骤是尝试恢复原本信息。

说明

  • BN操作现在已经成了目标检测网络的标配。
  • 该方法使得mAP提升了2%。
2.2.2 High Resolution Classifier

v1

  • 采用 224 × 224 224\times 224 224×224 图像训练网络,采用 448 × 448 448\times 448 448×448 图像进行检测

v2

  • 采用 224 × 224 224\times 224 224×224 图像进行预训练,再使用 448 ×
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值