超级牛逼R包登场,compareGroups包轻松制作出SCI论文表一、表二、表三(1)

本来不想再写这个教程了,因为前面已经写过很多了,也说过R包TableOne。但是这个R包真是太牛了,可以很轻松的制作出SCI论文表一(基线资料表)和表二(单因素分析表),也能轻松做出sci论文中多个模型比较的表三(多因素分析表),还可以做出线性趋势(P for trend),可以毫不夸张的说,使用好这个R包,你可以写一篇简单的SCI论文了,下面的表格都可以通过compareGroups包轻松制作出来。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这种表也是可以做出来的,也不难
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
好的。废话不多说,马上开工。
我们除了需要compareGroups包外还需要导入一个glue包,不然就会报错。
我们还是使用既往的乳腺癌数据,先导入R包和查看数据

library(foreign)
library(compareGroups)
library(glue)
bc <- read.spss("E:/r/test/Breast cancer survival agec.sav",
                use.value.labels=F, to.data.frame=T)
bc <- na.omit(bc)
head(bc)

在这里插入图片描述
把分类变量转换成因子

####转换为因子
bc$age1 <- factor(bc$age1)
bc$lnpos <- factor(bc$lnpos)
bc$histgrad <- factor(bc$histgrad)
bc$er<- factor(bc$er)
bc$pr <- factor(bc$pr)
bc$status<- factor(bc$status)
bc$pathscat<- factor(bc$pathscat)
bc$ln_yesno<- factor(bc$ln_yesno)

先看总体人群变量分布

descrTable( ~ ., data = bc)

在这里插入图片描述
按病例组织学分组,用histgrad表示

descrTable( histgrad~ ., data = bc)####.符号代表包括其他的变量

在这里插入图片描述
好像还不错把,继续。假如不想要agec这个变量

descrTable( histgrad~age+pathsize+er+status+pathscat+ln_yesno+ time, data = bc)

在这里插入图片描述
假如某个变量如:pathsize是非正态分布的,可以进行指定

descrTable( histgrad~age+pathsize+er+status+pathscat+ln_yesno+ time, data = bc,method = c
            (pathsize=2))##用中位数表示

在这里插入图片描述
也可以自动检验是否正态分布

descrTable( histgrad~age+pathsize+er+status+pathscat+ln_yesno+ time, 
            data = bc,method = c(pathsize=NA))##自动检验是否正态分布

在这里插入图片描述
分组为二分类变量时可以比较重要的OR或HR值,现在以是否淋巴结肿大分组

descrTable( ln_yesno~age+pathsize+er+status+pathscat+histgrad+ time, 
            data = bc, ref= 1,show.ratio=T)##参考水平为1

在这里插入图片描述
也可以更改某组的参考水平

descrTable( ln_yesno~age+pathsize+er+status+pathscat+histgrad+ time, 
            data = bc, ref= c(pathscat=2),show.ratio=T)##更改参考水平为

在这里插入图片描述
更改连续变量每个P-SD,加入我想看年龄每增加10岁的改变

descrTable( ln_yesno~age+pathsize+er+status+pathscat+histgrad+ time, 
            data = bc, ref= 1,show.ratio=T,fact.ratio = 10)##参考水平为1,更改连续变量每个P-SD

在这里插入图片描述
调整小数点显示位数

descrTable( ln_yesno~age+pathsize+er+status+pathscat+histgrad+ time, 
            data = bc, ref= 1,show.ratio=T,digits = 3)##参考水平为1,调整小数点显示位数

在这里插入图片描述
最后再来个大招加入分层变量

tab<-descrTable( ln_yesno~age+pathsize+status+pathscat+histgrad+ time, 
            data = bc)
be<-strataTable(tab, "er")
be

在这里插入图片描述
导出数据

export2csv(tab,file = "tab.csv")
export2word(tab, file='table1.docx')

如图
在这里插入图片描述
稍微修改一下就可以发表了
参考文献:

  1. compareGroups包说明手册
  2. https://mp.weixin.qq.com/s/WDr9mwsv8–NPLEBjtRiZA
    更多精彩文章请关注公众号:零基础说科研
    在这里插入图片描述
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值