随着全球人口老龄化,虚弱(frailty)作为一种常见的老年综合征日益成为重要的健康负担。
虚弱通常被定义为对应激源易感性增加的状态,其特征是多个生理系统储备下降。既往许多的研究已表明,虚弱与心血管疾病(CVD)发病风险密切相关。但仅仅只是关注基线虚弱状态,并不能反映虚弱的动态特性。
浙大研究团队朱益民[1]教授领衔通过利用多中心前瞻性队列研究探讨了老年虚弱状态变化与 CVD 发生风险之间的关系:虚弱的改善对降低 CVD 风险存在潜在益处,为心血管疾病预防提供新的切入点。
文章思路
核心数据指标
虚弱指数(FI)[4]、虚弱状态变化[5]、CVD 发病率[6]。
研究思路
首先研究数据来自三个大型前瞻性队列,其中:
- CHARLS[7]:包含 2011 年 15,857 名参与者
-
排除缺失 FI 计算数据(n=2,593)
-
基线 CVD 或失访(n=3,092)
CHARLS 基线分析纳入样本共计 10,172 人。
- ELSA[8]:包含来自 2004-2005 年 9,432 名参与者
-
排除缺失 FI 计算数据(n=1,734)
-
基线CVD或失访(n=1,250)
ELSA 基线分析纳入样本共计 6,448 人。
- HRS[9]:包含来自 19,220 名参与者
-
排除缺失 FI 计算数据(n=4,988)
-
基线CVD或失访(n=4,805)
HRS 基线分析纳入样本共计 10,172 人,第一轮排除后基线人群总计 26,047 人。研究者基于 Rockwood 虚弱指数[10]这一工具,通过 28 个健康缺陷项目,构建了虚弱状态这一指标,并将其作为一个 0-1 的连续变量,数值越大表示虚弱程度越高:
-
健康:FI ≤ 0.10
-
前虚弱:0.10 < FI < 0.25
-
虚弱:FI ≥ 0.25
我们可以通过 Table1 可以观察到虚弱程度增加伴随着以下趋势:
-
年龄增长
-
女性比例升高
-
BMI值增加
-
教育水平下降
-
身体活动水平降低
为分析虚弱状态变化,研究需要完整的两次评估数据,并且排除随访期间失访者,确保数据质量的严格筛选,因此对参与者基线特征进行第二次排除。
-
CHARLS: 排除 3,056 人
-
ELSA: 排除 1,145 人
-
HRS: 排除 2,161 人
在排除了 CHARLS 的 3,056 人、ELSA 的 1,145 人以及 HRS 的 2,161 人后,最终纳入分析样本 19,685 人。其中:
- CHARLS : n = 7,116
-
女性比例 : 48.6%
-
年龄范围 : 57.4±8.2 岁
-
中位随访时间 : 5.0 年
- ELSA : n = 5,303
-
女性比例 : 57.7%
-
年龄范围 : 63.7±9.3 岁
-
中位随访时间: 10.7 年
- HRS : n=7,266
-
女性比例 : 64.9%
-
年龄范围 : 65.1±8.7 岁
-
中位随访时间 : 9.5 年
研究者为进一步探索虚弱状态的动态性质,基于以上的到的数据,将虚弱状态变化的模式分类成维持/改善/恶化三类,共 9 种虚弱状态变化。
由于 CVD 发病是一个时间-事件结局,研究首先采用 Cox 比例风险模型,去分析基线虚弱状态与 CVD 发病风险的关系。通过比较 前虚弱状态组(pre-frail)[11]和 虚弱状态组(frail)[12] 与 健康状态组(robust)[13] 的 HR 及其 95%CI,发现虚弱程度越高, CVD 风险越大。
接着,研究者重点分析了虚弱状态变化与CVD风险的关系。以健康状态组/前虚弱状态/虚弱状态组为参照。
- 健康状态组比较
-
参照组:保持健康状态
-
比较组:健康→前虚弱/虚弱
- 前虚弱状态组比较
-
参照组:保持前虚弱状态
-
比较组:
-
前虚弱→健康
-
前虚弱→虚弱
- 虚弱状态组比较
-
参照组:保持虚弱状态
-
比较组:虚弱→健康/前虚弱
我们可以从图中观察到,通过比较了从该状态转变为其他状态的参与者 CVD 风险的差异,发现虚弱改善可显著降低CVD风险。
与保持强壮状态相比,进展至前虚弱或虚弱状态的个体显示出显著增加的心血管疾病风险:
-
CHARLS: HR = 1.84 (95% CI: 1.54-2.21)
-
ELSA: HR = 1.53 (95% CI: 1.25-1.86)
-
HRS: HR = 1.59 (95% CI: 1.31-1.92)
相比维持前虚弱状态,改善至强壮状态显示显著的保护作用,而进展至虚弱状态虽显示风险增加趋势,但未达统计学显著性(以前虚弱->健康为例):
-
CHARLS: HR = 0.66 (95% CI: 0.52-0.83)
-
ELSA: HR = 0.65 (95% CI: 0.49-0.85)
-
HRS: HR = 0.71 (95% CI: 0.56-0.91)
与维持虚弱状态相比,改善至强壮或前虚弱状态的个体显示显著降低的心血管疾病风险:
-
CHARLS: HR = 0.62 (95% CI: 0.47-0.81)
-
ELSA: HR = 0.49 (95% CI: 0.34-0.69)
-
HRS: HR = 0.70 (95% CI: 0.55-0.89)
进一步地,研究者构建了两个反映虚弱动态变化的指标:总虚弱负担指数(total FI)[14]和虚弱变化幅度(change in FI)[15]。
将 total FI 和 change in FI 划分为三分位数,以最低三分位数为参照,比较不同三分位数的CVD风险,并进行趋势性检验。
通过 Table5 我们可以得到结论:total FI 最高三分位数的个体 CVD 风险最高,校正后 HR 为2.07-2.79。
而 change in FI 最高三分位数(虚弱恶化最明显)的个体 CVD 风险最高,校正后 HR 为 1.39-1.41。
这两个指标均呈现随三分位数增加而 CVD 风险递增的趋势(P for trend均<0.001)。研究的定量结果进一步印证了虚弱动态变化与 CVD 风险的关联。虚弱负担越大、恶化越明显,CVD 风险就越高。
为进一步验证主要结果的稳健性,研究中进行了一系列敏感性分析。主要包括:a.使用第三次调查重新评估虚弱状态变化;b.进一步调整协变量或排除CVD高危因素;c.考虑死亡的竞争风险;d.改变CVD的定义等。
在各种敏感性分析中,结果与主要分析基本一致。另外,分层分析显示,研究结果在不同性别和年龄组中也是稳健的。
点评
其实 FI 作为评估老年健康状况的重要工具,在许多研究中早被广泛应用,但大多数研究受限于数据库本身的局限性,难以进行深入的纵向分析。
但研究通过整合 HRS、CHARLS 等大型老龄化队列数据库的优势,成功地突破了这一限制。
利用这些数据库独特的追踪随访特性和明确的时序关系,研究团队不仅构建了动态的虚弱评估体系,更首次评估了虚弱状态改变与心血管疾病风险的关联,为老年医学研究提供了新的范式。
随着全球人口加速老龄化,预计到 2050 年 60 岁以上人口将翻倍增长,这不仅是巨大的公共卫生挑战,更说明了老龄化研究的重要机遇。
面对这一趋势,掌握老龄化队列数据库的分析方法,可以成为你医学研究上的制胜关键。而HRS、CHARLS等数据库,以其严谨的队列设计、丰富的随访数据和广泛的国际认可度,正成为高质量研究的重要基石。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。