变分法如何解决最优控制问题

本文详细探讨了使用变分法解决最优控制问题的五个不同情况,包括具有等式约束的问题、末态时刻固定且无约束的情况、末态时刻和末态固定的问题、末态时刻固定但受约束的情况,以及末态时刻未定但末态受约束的问题。通过拉格朗日乘子和欧拉方程,阐述了解决这些问题的步骤和条件。
摘要由CSDN通过智能技术生成

本文是基于在此之前的一篇文章的后续。之前文章主要讲述最优控制问题的一个描述和变分法在泛函中的一些应用,在此不过多叙述。文章链接为:https://blog.csdn.net/qq_40241332/article/details/95941248 和 https://blog.csdn.net/qq_40241332/article/details/106182432

主要分为以下几个部分:

  • 具有等式约束下的条件问题
  • 末态时刻固定,末态无约束的最优控制问题
  • 末态时刻和末态固定的最优控制问题
  • 末态时刻固定,末态受约束的最优控制问题
  • 末态时刻未定的问题

1. 具有等式约束下的条件问题

问题描述如下所示:

寻找一条连续可微的极值曲线,使得性能泛函

J=\int^{t_f}_{t_0}F(t,\mathbf x(t),\dot{\mathbf x}(t))dt

达到极值,极值曲线\mathbf x(t)满足微分方程的等式约束

\Psi (t,\mathbf x(t),\dot{\mathbf x}(t))=0

其中\Psi(t,\mathbf x(t),\dot{\mathbf x}(t))m(m\leq n)关于t\mathbf x\dot{\mathbf x}的非线性向量函数。

定理 1.1 :如果n维向量函数x(t)能使等式约束变分问题取极值,则必然存在m维拉格朗日乘子向量函数\lambda(t),使得泛函

J_1=\int^{t_f}_{t_0}H(t,\mathbf x(t),\dot{\mathbf x}(t),\lambda(t))dt

达到无条件极值,即极值曲线x(t)是欧拉方程\frac{\partial H}{\partial \mathbf x}-\frac{d}{dt}\frac{\partial H}{\partial \dot{\mathbf x}}=0和等式约束条件\Psi (t,\mathbf x(t),\dot{\mathbf x}(t))=0的解,其中H(t,\mathbf x(t),\dot{\mathbf x}(t),\lambda(t))=F(t,\mathbf x(t),\dot{\mathbf x}(t))+\lambda^T(t)\Psi (t,\mathbf x(t),\dot{\mathbf x}(t))

理解:等式约束条件和欧拉方程,有m+n个方程,正好解出n+m个未知数\mathbf x(t)\lambda(t)

2. 末态时刻固定,末态无约束的最优控制问题

问题描述:求一容许控制u(t)\in U,t\in [t_0,t_f],在末态时刻t_f固定,状态x(t_f)无约束,初始状态x(t_0)=x_0以及被控系统

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值