2017.7.25报告

2017.7.25报告:

一、邹丹平博士:视觉SLAM基础

1.主要内容:

1.1 SLAM大致可以分为激光SLAM视觉SLAM两类,但其主要思路大同小异。

激光SLAM分为:2D和3D激光SLAM两种

视觉SLAM也分为:Sparse、semiDense、Dense三种

1.2 视觉SLAM目前由两个分支:分别是基于滤波器的视觉SLAM和基于(关键帧)图优化方法的视觉SLAM,目前基于图优化的方法占主导地位:

  • 基于滤波器的SLAM:使用滤波器的方法,精度低,扩展性高
  • 基于图优化的SLAM:使用优化的方法,精度高,但是由于加一个传感器就要改变优化函数,可扩展性不强

 

1.3 相机的畸变模型:

  • model1:对于一般相机很精确,但是不支持鱼眼相机的校正

 

  • model2:对于一般的相机效果都不太好,是在PTAM中使用的模型

 

model3:适用于鱼眼相机的校正

 

1.4 去除视觉里程计中图像之间的误匹配的点的方法:RANSAC和M-estimator 
* RANSAC:可以在80%outlier情况下取得很好的效果,适合outlier较多和较少的情况,但是计算量较大。 
* M-etimator:适合与outlier不多的情况,计算量较小。

1.5 key frame的选择方法: 
* 距离上一关键帧有足够的距离 
* 当前图像的清晰度高 
* 当前帧与上一关键帧有一定数量的特征点重合

 

1.6 常用Bundle Adjustment(光束平差法)库

ORB—SLAM中的Bundle Adjustment中的库是g2o,但是sba,mcba的性能比g2o好。

  • sba: A Generic Sparse Bundle Adjustment C/C++

  • mcba: Multi-Core Bundle Adjustment (CPU/GPU). GPL3.

  • g2o: General Graph Optimization (C++) - framework with solvers for sparse graph-based non-linear error functions. LGPL.

  • Apero/MicMac, a free open source photogrammetric 
    software. Cecill-B licence.

  • Package Based on the Levenberg–Marquardt Algorithm (C, MATLAB). GPL.

  • cvsba: An OpenCV wrapper for sba library (C++). GPL.

  • ssba: Simple Sparse Bundle Adjustment package based on the Levenberg–Marquardt Algorithm (C++). LGPL.

  • opencv: Computer Vision library in the contrib module. BSD license.

  • libdogleg: General-purpose sparse non-linear least squares solver, based on Powell’s dogleg method. LGPL.

  • ceres-solver: A Nonlinear Least Squares Minimizer. BSD license.

  • DGAP: The program DGAP implement the photogrammetric method of bundle adjustment invented by Helmut Schmid and Duane Brown. GPL.

1.7 CoSLAM: Collaborative visual slam in dynamic environments(多机器人slam) 
具体介绍和源码见ppt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值