PPP函数模型
PPP数学模型(函数模型和随机模型)
PPP数学模型基于PPP基本观测方程,可分为两类:
- 函数模型:描述观测值与待估参数间的关系;
- 随机模型:描述观测值特性及观测值间的内在联系。
PPP主要利用测距码伪距和载波相位两种观测量进行定位解算。其中,伪距观测值精度较低,主要用于计算GNSS信号传播时间,作为相位观测值模糊度解算的钟差基准。
PPP基本观测方程(伪距和相位)
{
P
r
,
i
s
=
ρ
r
s
+
c
⋅
(
d
t
r
−
d
t
s
)
+
T
r
s
+
γ
i
I
r
,
1
s
+
ϵ
r
,
i
s
+
b
r
,
i
−
b
i
s
L
r
,
i
s
=
ρ
r
s
+
c
⋅
(
d
t
r
−
d
t
s
)
+
T
r
s
−
γ
i
I
r
,
1
s
+
ξ
r
,
i
s
+
λ
i
⋅
(
B
r
,
i
−
B
i
s
)
+
λ
i
⋅
N
r
,
i
s
(2.1)
\left\{ \begin{aligned} P_{r,i}^s &= \rho_r^s + c \cdot (dt_r - dt^s) + T_r^s + \gamma_i I_{r,1}^s + \epsilon_{r,i}^s + b_{r,i} - b_i^s \\ L_{r,i}^s &= \rho_r^s + c \cdot (dt_r - dt^s) + T_r^s - \gamma_i I_{r,1}^s + \xi_{r,i}^s + \lambda_i \cdot (B_{r,i} - B_i^s) + \lambda_i \cdot N_{r,i}^s \end{aligned} \right. \quad \text{(2.1)}
{Pr,isLr,is=ρrs+c⋅(dtr−dts)+Trs+γiIr,1s+ϵr,is+br,i−bis=ρrs+c⋅(dtr−dts)+Trs−γiIr,1s+ξr,is+λi⋅(Br,i−Bis)+λi⋅Nr,is(2.1)
式中:
- i i i 表示信号频率;
- r r r 代表接收机(测站);
- s s s 表示卫星PRN(Pseudo-Random Noise)号;
- P P P 代表伪距观测值,单位为米;
- L L L 表示相位观测值,单位为米;
- ρ \rho ρ 为接收机与卫星天线相位中心的距离,单位为米;
- d t r dt_r dtr 和 d t s dt^s dts 分别为接收机钟差和卫星钟差,单位为秒;
- T T T 表示GNSS信号在斜路径方向上对流层延迟,单位为米;其中, T = m r , w s ⋅ Z r , w \ T = m_{r,w}^s \cdot Z_{r,w} T=mr,ws⋅Zr,w;
- Z r , w Z_{r,w} Zr,w 和 m r , w s m_{r,w}^s mr,ws 分别表示测站天顶对流层湿延迟及投影函数,前者单位为米;
- I r , 1 s I_{r,1}^s Ir,1s 代表第一频率LOS方向上的电离层延迟量,单位为米;
- γ i \gamma_i γi 表示电离层映射因子, f i f_i fi 表示第i信号频率的频率,其中 γ i = f i 2 / f 1 2 \gamma_i=f_i^2/f_1^2 γi=fi2/f12;
- ε r , i s \varepsilon_{r,i}^s εr,is 和 ξ r , i s \xi_{r,i}^s ξr,is 分别为伪距和载波观测值的观测噪声、多路径误差和未模型化误差的总和;
- b r , i b_{r,i} br,i 和 b i s b_i^s bis 分别表示频率i上的接收机端和卫星端的伪距硬件延迟 (UCD),单位为米,通常认为其在一天内较为稳定;
- B r , i B_{r,i} Br,i 和 B i s B_i^s Bis 分别表示频率i上的接收机端和卫星端的相位硬件延迟 (UPD),单位为周,其中整周部分可完全被模糊度参数吸收;
- λ i \lambda_i λi 和 N r , i s N_{r,i}^s Nr,is 分别表示频率i上的波长和整周模糊度;
此外,GNSS观测方程还受其他误差项的影响,包括卫星端和接收机端的天线PCO、PCV及相位缠绕误差、地球自转偏差、相对论效应和地球潮汐改正等,均可通过模型化精密处理,因此在观测方程中视为已改正;对流层延迟的干分量通常通过先验模型进行改正,如萨斯塔莫宁模型。
PPP函数模型——无电离层组合(IF)
无电离层组合是GNSS数据处理中最常用的PPP函数模型。由于电离层具有弥散特点,GNSS信号在电离层中传播的时间延迟仅取决于信号的频率以及传播路径上电子总量,因此可通过IF组合即可消除一阶电离层延迟,同时还可保留几何信息。IF组合观测值可表示为:
{
P
r
,
I
F
s
=
f
i
2
f
i
2
−
f
j
2
P
r
,
i
s
−
f
j
2
f
i
2
−
f
j
2
P
r
,
j
s
L
r
,
I
F
s
=
f
i
2
f
i
2
−
f
j
2
L
r
,
i
s
−
f
j
2
f
i
2
−
f
j
2
L
r
,
j
s
(2.2)
\left\{ \begin{aligned} &P_{r,IF}^s = \frac{f_i^2}{f_i^2-f_j^2}P_{r,i}^s - \frac{f_j^2}{f_i^2-f_j^2}P_{r,j}^s \\ &L_{r,IF}^s = \frac{f_i^2}{f_i^2-f_j^2}L_{r,i}^s - \frac{f_j^2}{f_i^2-f_j^2}L_{r,j}^s \end{aligned} \right. \quad \text{(2.2)}
⎩
⎨
⎧Pr,IFs=fi2−fj2fi2Pr,is−fi2−fj2fj2Pr,jsLr,IFs=fi2−fj2fi2Lr,is−fi2−fj2fj2Lr,js(2.2)
式中,
P
r
,
I
F
s
P_{r,IF}^s
Pr,IFs和
L
r
,
I
F
s
L_{r,IF}^s
Lr,IFs分别表示伪距和相位IF组合观测值,无电离层组合系数表示为:
{
α
i
j
=
f
i
2
f
i
2
−
f
j
2
β
i
j
=
f
j
2
f
i
2
−
f
j
2
(2.3)
\left\{ \begin{aligned} \alpha_{ij} &= \frac{f_i^2}{f_i^2-f_j^2}\\ \beta_{ij} &= \frac{f_j^2}{f_i^2-f_j^2} \end{aligned} \right. \quad \text{(2.3)}
⎩
⎨
⎧αijβij=fi2−fj2fi2=fi2−fj2fj2(2.3)
将公式(2.1)带入公式(2.2)可推得:
{
P
r
,
I
F
s
=
ρ
r
s
+
c
⋅
(
d
t
r
−
d
t
s
)
+
m
r
,
w
s
Z
r
,
w
+
ε
r
,
I
F
s
+
b
r
,
I
F
−
b
I
F
s
(2.4)
L
r
,
I
F
s
=
ρ
r
s
+
c
⋅
(
d
t
r
−
d
t
s
)
+
m
r
,
w
s
Z
r
,
w
+
ξ
r
,
I
F
s
+
λ
I
F
⋅
(
B
r
,
I
F
−
B
I
F
s
)
+
λ
I
F
⋅
N
r
,
I
F
s
(2.4)
\left\{ \begin{aligned} P_{r,IF}^s &= \rho_r^s + c \cdot (dt_r - dt^s) + m_{r,w}^s Z_{r,w} + \varepsilon_{r,IF}^s + b_{r,IF} - b_{IF}^s \quad \text{(2.4)}\\ L_{r,IF}^s &= \rho_r^s + c \cdot (dt_r - dt^s) + m_{r,w}^s Z_{r,w} + \xi_{r,IF}^s + \lambda_{IF} \cdot (B_{r,IF} - B_{IF}^s) + \lambda_{IF} \cdot N_{r,IF}^s \end{aligned} \right. \quad \text{(2.4)}
{Pr,IFsLr,IFs=ρrs+c⋅(dtr−dts)+mr,wsZr,w+εr,IFs+br,IF−bIFs(2.4)=ρrs+c⋅(dtr−dts)+mr,wsZr,w+ξr,IFs+λIF⋅(Br,IF−BIFs)+λIF⋅Nr,IFs(2.4)
其中:
{
b
r
,
I
F
=
α
i
j
b
r
,
i
−
β
i
j
b
r
,
j
b
I
F
s
=
α
i
j
b
i
s
−
β
i
j
b
j
s
B
r
,
I
F
=
(
α
i
j
λ
i
B
r
,
i
−
β
i
j
λ
j
B
r
,
j
)
/
λ
I
F
B
I
F
s
=
(
α
i
j
λ
i
B
i
s
−
β
i
j
λ
j
B
j
s
)
/
λ
I
F
N
r
,
I
F
s
=
(
α
i
j
λ
i
N
r
,
i
s
−
β
i
j
λ
j
N
r
,
j
s
)
/
λ
I
F
(2.5)
\left\{ \begin{aligned} b_{r,IF} &= \alpha_{ij}b_{r,i} - \beta_{ij}b_{r,j}\\ b_{IF}^s &= \alpha_{ij}b_i^s - \beta_{ij}b_j^s\\ B_{r,IF} &= (\alpha_{ij}\lambda_i B_{r,i} - \beta_{ij}\lambda_j B_{r,j})/\lambda_{IF}\\ B_{IF}^s &= (\alpha_{ij}\lambda_i B_i^s - \beta_{ij}\lambda_j B_j^s)/\lambda_{IF}\\ N_{r,IF}^s &= (\alpha_{ij}\lambda_i N_{r,i}^s - \beta_{ij}\lambda_j N_{r,j}^s)/\lambda_{IF} \end{aligned} \right. \quad \text{(2.5)}
⎩
⎨
⎧br,IFbIFsBr,IFBIFsNr,IFs=αijbr,i−βijbr,j=αijbis−βijbjs=(αijλiBr,i−βijλjBr,j)/λIF=(αijλiBis−βijλjBjs)/λIF=(αijλiNr,is−βijλjNr,js)/λIF(2.5)
式中:
- b r , I F b_{r,IF} br,IF 和 b I F s b_{IF}^s bIFs 分别表示IF组合的接收机端与卫星端UCD;
- B r , I F B_{r,IF} Br,IF 和 B I F s B_{IF}^s BIFs 分别表示IF组合的接收机端与卫星端UPD;
- N r , I F s N_{r,IF}^s Nr,IFs 表示IF组合的浮点模糊度;
- ε r , I F s \varepsilon_{r,IF}^s εr,IFs 和 ξ r , I F s \xi_{r,IF}^s ξr,IFs 分别表示伪距与相位IF组合观测值噪声、多路径效应和未模型化误差的总和。
在PPP数据处理中,通常采用IGS ACs播发的实时或事后精密轨道与卫星钟差产品削弱几乎所有轨道误差和卫星钟差的影响,当前精密钟差产品
t
I
F
s
t_{IF}^s
tIFs 是通过IF组合解算得到的,它与“真实”的卫星钟差
t
I
F
s
t_{IF}^s
tIFs 的关系可以被描述为下式:
t
I
F
s
=
t
s
+
b
I
F
s
=
t
s
+
α
i
j
b
i
s
−
β
i
j
b
j
s
(2.6)
t_{IF}^s = t^s + b_{IF}^s = t^s + \alpha_{ij}b_i^s - \beta_{ij}b_j^s \quad \text{(2.6)}
tIFs=ts+bIFs=ts+αijbis−βijbjs(2.6)
双频无电离层组合函数模型:
{
p
r
,
I
F
s
=
μ
r
s
⋅
x
+
t
^
r
,
I
F
−
t
I
F
s
+
m
r
,
w
s
Z
r
,
w
+
ε
r
,
I
F
s
l
r
,
I
F
s
=
μ
r
s
⋅
x
+
t
^
r
,
I
F
−
t
I
F
s
+
m
r
,
w
s
Z
r
,
w
+
ξ
r
,
I
F
s
+
λ
I
F
⋅
N
^
r
,
I
F
s
(2.7)
\left\{ \begin{aligned} p_{r,IF}^s &= \mu_r^s \cdot x + \hat{t}_{r,IF} - t_{IF}^s + m_{r,w}^s Z_{r,w} + \varepsilon_{r,IF}^s\\ l_{r,IF}^s &= \mu_r^s \cdot x + \hat{t}_{r,IF} - t_{IF}^s + m_{r,w}^s Z_{r,w} + \xi_{r,IF}^s + \lambda_{IF} \cdot \hat{N}_{r,IF}^s \end{aligned} \right. \quad \text{(2.7)}
{pr,IFslr,IFs=μrs⋅x+t^r,IF−tIFs+mr,wsZr,w+εr,IFs=μrs⋅x+t^r,IF−tIFs+mr,wsZr,w+ξr,IFs+λIF⋅N^r,IFs(2.7)
其中,
{
t
^
r
,
I
F
=
t
r
+
b
r
,
I
F
=
t
r
+
α
i
j
b
r
,
i
−
β
i
j
b
r
,
j
N
^
r
,
I
F
s
=
N
r
,
I
F
s
+
B
r
,
I
F
−
B
I
F
s
+
b
r
,
I
F
−
b
I
F
s
λ
I
F
(2.8)
\left\{ \begin{aligned} \hat{t}_{r,IF} &= t_r + b_{r,IF} = t_r + \alpha_{ij}b_{r,i} - \beta_{ij}b_{r,j} \\ \hat{N}_{r,IF}^s &= N_{r,IF}^s + \frac{B_{r,IF} - B_{IF}^s + b_{r,IF} - b_{IF}^s}{\lambda_{IF}} \end{aligned} \right. \quad \text{(2.8)}
⎩
⎨
⎧t^r,IFN^r,IFs=tr+br,IF=tr+αijbr,i−βijbr,j=Nr,IFs+λIFBr,IF−BIFs+br,IF−bIFs(2.8)
- p r , I F s p_{r,IF}^s pr,IFs 和 l r , I F s l_{r,IF}^s lr,IFs 表示伪距和相位IF组合的观测值减去计算值 (Observed Minus Computed, OMC);
- μ r s \mu_r^s μrs 表示从LOS方向上的标准向量;
- x x x 为坐标参数;
- t ^ r , I F \hat{t}_{r,IF} t^r,IF 表示吸收了接收机端UCD的接收机钟差参数;
- N ^ r , I F s \hat{N}_{r,IF}^s N^r,IFs 表示吸收了UCD和UPD的模糊度参数;
其他说明:
- 除 N ^ r , I F s \hat{N}_{r,IF}^s N^r,IFs以外,其余参数均为伪距和相位IF观测方程的共有参数;
- PPP以伪距观测值为钟差基准,接收机钟差参数为共有参数:
- 接收机端UCD的影响会通过钟差基准传递到相位观测方程;
- 卫星端UCD的影响也会通过通用精密钟差产品传递到相位观测方程;
- 接收机端和卫星端的UCD最终将与UPD一同被模糊度参数吸收。
当前各IGS或MGEX ACs的精密钟差产品均基于伪距IF组合而求得,所使用的频率为:GPS (L1和L2);GLONASS (G1和G2);Galileo (E1和E5a);BDS (B1I和B3I),而CODE例外 (B1I和B2I)。值得一提的是,用户端使用频率与精密卫星钟差产品不一致时,则需要使用DCB或伪距OSB产品消除伪距IF组合中卫星端UCD的影响。
IF组合PPP模型中的待估参数包括模糊度、接收机坐标、接收机钟差及对流层延迟:
X
=
[
x
t
^
r
,
I
F
Z
r
,
w
N
^
r
,
I
F
s
]
T
(2.9)
X = \begin{bmatrix} x & \hat{t}_{r,IF} & Z_{r,w} & \hat{N}_{r,IF}^s \end{bmatrix}^T \quad \text{(2.9)}
X=[xt^r,IFZr,wN^r,IFs]T(2.9)
以静态PPP为例,当连续观测到n颗卫星时,观测方程总数为2n,待估参数总数为n+5,自由度为n-5,因此IF组合模型初始化至少需要观测到5颗可用卫星。
PPP函数模型——非差非组合(UDUC)
IF组合模型损失了电离层延迟信息、降低了观测值利用率并放大了观测噪声。相比于IF组合模型,UDUC模型具有以下优势:
1)避免了IF组合观测值噪声放大和观测方程数量损失的问题;
2)具有较强的可扩展性,适用于多系统多频率PPP联合定位;
3)避免了电离层信息的损失,既可利用外部电离层信息加快收敛,亦可用于电离层建模和DCB估计;
综合公式 (2.1) (2.6),采用精密钟差产品 (IF组合),并将方程线性化后可得到非差非组合模型:
{
P
r
,
i
s
=
μ
r
s
⋅
x
+
t
r
−
t
I
F
s
+
γ
i
I
r
,
1
s
+
m
r
s
Z
r
,
w
+
ε
r
,
i
s
+
b
r
,
i
−
b
i
s
+
α
i
j
b
i
s
−
β
i
j
b
j
s
P
r
,
j
s
=
μ
r
s
⋅
x
+
t
r
−
t
I
F
s
+
γ
j
I
r
,
1
s
+
m
r
s
Z
r
,
w
+
ε
r
,
j
s
+
b
r
,
j
−
b
j
s
+
α
i
j
b
i
s
−
β
i
j
b
j
s
L
r
,
i
s
=
μ
r
s
⋅
x
+
t
r
−
t
I
F
s
−
γ
i
I
r
,
1
s
+
m
r
s
Z
r
,
w
+
ξ
r
,
i
s
+
λ
i
N
r
,
i
s
+
λ
i
(
B
r
,
i
−
B
i
s
)
+
α
i
j
b
i
s
−
β
i
j
b
j
s
L
r
,
j
s
=
μ
r
s
⋅
x
+
t
r
−
t
I
F
s
−
γ
j
I
r
,
1
s
+
m
r
s
Z
r
,
w
+
ξ
r
,
j
s
+
λ
j
N
r
,
j
s
+
λ
j
(
B
r
,
j
−
B
j
s
)
+
α
i
j
b
i
s
−
β
i
j
b
j
s
(2.10)
\left\{ \begin{aligned} P_{r,i}^s &= \mu_r^s \cdot x + t_r - t_{IF}^s + \gamma_i I_{r,1}^s + m_r^s Z_{r,w} + \varepsilon_{r,i}^s + b_{r,i} - b_i^s + \alpha_{ij}b_i^s - \beta_{ij}b_j^s \\ P_{r,j}^s &= \mu_r^s \cdot x + t_r - t_{IF}^s + \gamma_j I_{r,1}^s + m_r^s Z_{r,w} + \varepsilon_{r,j}^s + b_{r,j} - b_j^s + \alpha_{ij}b_i^s - \beta_{ij}b_j^s \\ L_{r,i}^s &= \mu_r^s \cdot x + t_r - t_{IF}^s - \gamma_i I_{r,1}^s + m_r^s Z_{r,w} + \xi_{r,i}^s + \lambda_i N_{r,i}^s + \lambda_i (B_{r,i} - B_i^s) + \alpha_{ij}b_i^s - \beta_{ij}b_j^s \\ L_{r,j}^s &= \mu_r^s \cdot x + t_r - t_{IF}^s - \gamma_j I_{r,1}^s + m_r^s Z_{r,w} + \xi_{r,j}^s + \lambda_j N_{r,j}^s + \lambda_j (B_{r,j} - B_j^s) + \alpha_{ij}b_i^s - \beta_{ij}b_j^s \end{aligned} \tag{2.10} \right.
⎩
⎨
⎧Pr,isPr,jsLr,isLr,js=μrs⋅x+tr−tIFs+γiIr,1s+mrsZr,w+εr,is+br,i−bis+αijbis−βijbjs=μrs⋅x+tr−tIFs+γjIr,1s+mrsZr,w+εr,js+br,j−bjs+αijbis−βijbjs=μrs⋅x+tr−tIFs−γiIr,1s+mrsZr,w+ξr,is+λiNr,is+λi(Br,i−Bis)+αijbis−βijbjs=μrs⋅x+tr−tIFs−γjIr,1s+mrsZr,w+ξr,js+λjNr,js+λj(Br,j−Bjs)+αijbis−βijbjs(2.10)
当使用频率与精密钟差产品一致时,公式可转换为:
{
P
r
,
i
s
=
μ
r
s
⋅
x
+
t
^
r
,
I
F
−
t
I
F
s
+
γ
i
I
r
,
1
s
+
m
r
s
Z
r
,
w
+
ε
r
,
i
s
P
r
,
j
s
=
μ
r
s
⋅
x
+
t
^
r
,
I
F
−
t
I
F
s
+
γ
j
I
r
,
1
s
+
m
r
s
Z
r
,
w
+
ε
r
,
j
s
L
r
,
i
s
=
μ
r
s
⋅
x
+
t
^
r
,
I
F
−
t
I
F
s
−
γ
i
I
r
,
1
s
+
m
r
s
Z
r
,
w
+
ξ
r
,
i
s
+
λ
i
N
r
,
i
s
L
r
,
j
s
=
μ
r
s
⋅
x
+
t
^
r
,
I
F
−
t
I
F
s
−
γ
j
I
r
,
1
s
+
m
r
s
Z
r
,
w
+
ξ
r
,
j
s
+
λ
j
N
r
,
j
s
(2.11)
\left\{ \begin{aligned} P_{r,i}^s &= \mu_r^s \cdot x + \hat{t}_{r,IF} - t_{IF}^s + \gamma_i I_{r,1}^s + m_r^s Z_{r,w} + \varepsilon_{r,i}^s \\ P_{r,j}^s &= \mu_r^s \cdot x + \hat{t}_{r,IF} - t_{IF}^s + \gamma_j I_{r,1}^s + m_r^s Z_{r,w} + \varepsilon_{r,j}^s \\ L_{r,i}^s &= \mu_r^s \cdot x + \hat{t}_{r,IF} - t_{IF}^s - \gamma_i I_{r,1}^s + m_r^s Z_{r,w} + \xi_{r,i}^s + \lambda_i N_{r,i}^s \\ L_{r,j}^s &= \mu_r^s \cdot x + \hat{t}_{r,IF} - t_{IF}^s - \gamma_j I_{r,1}^s + m_r^s Z_{r,w} + \xi_{r,j}^s + \lambda_j N_{r,j}^s \end{aligned} \tag{2.11} \right.
⎩
⎨
⎧Pr,isPr,jsLr,isLr,js=μrs⋅x+t^r,IF−tIFs+γiIr,1s+mrsZr,w+εr,is=μrs⋅x+t^r,IF−tIFs+γjIr,1s+mrsZr,w+εr,js=μrs⋅x+t^r,IF−tIFs−γiIr,1s+mrsZr,w+ξr,is+λiNr,is=μrs⋅x+t^r,IF−tIFs−γjIr,1s+mrsZr,w+ξr,js+λjNr,js(2.11)
其中,
{
I
r
,
i
s
=
I
r
,
1
s
−
β
i
j
(
b
r
,
i
−
b
r
,
j
)
+
β
i
j
(
b
i
s
−
b
j
s
)
N
r
,
i
s
=
N
r
,
i
s
+
B
r
,
i
−
B
i
s
−
(
b
r
,
i
−
b
i
s
)
+
2
β
i
j
(
b
r
,
i
−
b
i
s
)
−
2
β
i
j
(
b
r
,
j
−
b
j
s
)
λ
i
N
r
,
j
s
=
N
r
,
j
s
+
B
r
,
j
−
B
j
s
−
(
b
r
,
j
−
b
j
s
)
−
2
α
i
j
(
b
r
,
j
−
b
j
s
)
+
2
α
i
j
(
b
r
,
i
−
b
i
s
)
λ
j
(2.12)
\left\{ \begin{aligned} I_{r,i}^s &= I_{r,1}^s - \beta_{ij}(b_{r,i} - b_{r,j}) + \beta_{ij}(b_i^s - b_j^s) \\ N_{r,i}^s &= N_{r,i}^s + \frac{B_{r,i} - B_i^s - (b_{r,i} - b_i^s) + 2\beta_{ij}(b_{r,i} - b_i^s) - 2\beta_{ij}(b_{r,j} - b_j^s)}{\lambda_i} \\ N_{r,j}^s &= N_{r,j}^s + \frac{B_{r,j} - B_j^s - (b_{r,j} - b_j^s) - 2\alpha_{ij}(b_{r,j} - b_j^s) + 2\alpha_{ij}(b_{r,i} - b_i^s)}{\lambda_j} \end{aligned} \tag{2.12} \right.
⎩
⎨
⎧Ir,isNr,isNr,js=Ir,1s−βij(br,i−br,j)+βij(bis−bjs)=Nr,is+λiBr,i−Bis−(br,i−bis)+2βij(br,i−bis)−2βij(br,j−bjs)=Nr,js+λjBr,j−Bjs−(br,j−bjs)−2αij(br,j−bjs)+2αij(br,i−bis)(2.12)
其中,
t
^
r
,
I
F
\hat{t}_{r,IF}
t^r,IF表示待估的接收机钟差参数,其表达式与无电离层组合一致:
t ^ r , I F = t r + α i j b r , i − β i j b r , j \hat{t}_{r,IF} = t_r + \alpha_{ij}b_{r,i} - \beta_{ij}b_{r,j} t^r,IF=tr+αijbr,i−βijbr,j
当用户端PPP使用的观测值频点(如 f i , f j f_i,f_j fi,fj)与精密钟差产品基准频率(如 f 1 , f 2 f_1,f_2 f1,f2)不一致时,需通过外部产品改正:
-
DCB改正:
Δ b = b i − b j f i 2 / f j 2 − 1 \Delta b = \frac{b_{i}-b_{j}}{f_i^2/f_j^2 - 1} Δb=fi2/fj2−1bi−bj -
OSB改正:
δ b = α i j b i s − β i j b j s \delta b = \alpha_{ij}b_i^s - \beta_{ij}b_j^s δb=αijbis−βijbjs
建议优先采用IGS发布的CODE.DCB
或CAS.OSB
产品进行校正。
双频UDUC模型中的待估参数包括:
X
=
[
x
t
^
r
,
I
F
Z
r
,
w
I
r
,
i
s
N
r
,
i
s
N
r
,
j
s
]
T
(2.13)
X = \begin{bmatrix} x & \hat{t}_{r,IF} & Z_{r,w} & I_{r,i}^s & N_{r,i}^s & N_{r,j}^s \end{bmatrix}^T \tag{2.13}
X=[xt^r,IFZr,wIr,isNr,isNr,js]T(2.13)
以静态PPP为例,当连续观测到n颗卫星时,观测方程总数为4m,待估参数总数为3n+5,自由度为n-5,因此UDUC模型初始化至少需要观测到5颗可用卫星。
PPP随机模型
随机模型分为参数随机模型和观测值随机模型。前者用以描述各类待估参数之的先验精度及过程噪声;后者用以描述观测值本身的精度水平及权重。
PPP随机模型——状态参数
参数随机模型主要用以表征各类待估参数的随机特性,包括初始精度以及过程噪声。PPP中涉及的参数模型主要分为:
- 常数模型;
- 线性模型;
- 白噪声模型;
- 随机游走模型;
PPP中待估参数包括接收机钟差、接收机坐标、整周模糊度、对流层延迟以及电离层延迟 (仅在UDUC模型中)。各类待估参数随机模型需要根据其随时间变化的特性而定。
静态接收机位置参数和未发生周跳时的载波相位模糊度表现为不随时间变化的常数值,因此通常采用常数模型;动态接收机位置参数、接收机钟差和电离层延迟随时间变化快,且不具备明显的变化规律,通常采用白噪声模型并在每个历元重新初始化,同时,发生周跳时的载波相位模糊度因其无法预测的特性也被建模为白噪声;对流层延迟参数具有较强的时间相关性,但短期内可由历史信息预测,一般采用分段线性模型或随机游走模型估计。在Multi-GNSS中,系统间偏差(ISB)亦不可忽略,通常被建模为白噪声或随机游走。
PPP随机模型——观测值
初始观测值噪声是衡量观测值精度指标和确定随机模型的重要依据。PPP观测值随机模型见方差协方差阵,通常为权函数*观测值先验精度的平方。
方差协方差矩阵——非差非组合(UDUC)
原始观测值的方差协方差阵 Σ U C \mathrm{\Sigma}_{UC} ΣUC 表达式为:
Σ U C = w ( ζ ) ⋅ diag ( δ P 2 , δ L 2 ) (2.14) \mathrm{\Sigma}_{UC} = w(\zeta) \cdot \text{diag}(\delta_P^2, \delta_L^2) \quad \text{(2.14)} ΣUC=w(ζ)⋅diag(δP2,δL2)(2.14)
式中:
-
diag
(
δ
P
2
,
δ
L
2
)
\text{diag}(\delta_P^2, \delta_L^2)
diag(δP2,δL2):对角矩阵
- δ P \delta_P δP:伪距观测值标准差(典型值0.3m)
- δ L \delta_L δL:载波相位观测值标准差(典型值3mm)
- w ( ζ ) w(\zeta) w(ζ):权函数(通常与卫星高度角/信噪比相关)
- ζ \zeta ζ:权函数的自变量
方差协方差矩阵——无电离层组合(IF)
根据误差传播定律,IF组合观测值的方差协方差阵 Σ I F \mathrm{\Sigma}_{IF} ΣIF 为:
Σ I F = w ( ζ ) ⋅ ( α i j 2 − β i j 2 ) ⋅ diag ( δ P 2 , δ L 2 ) (2.15) \mathrm{\Sigma}_{IF} = w(\zeta) \cdot (\alpha_{ij}^2 - \beta_{ij}^2) \cdot \text{diag}(\delta_P^2, \delta_L^2) \quad \text{(2.15)} ΣIF=w(ζ)⋅(αij2−βij2)⋅diag(δP2,δL2)(2.15)
符号 | 说明 |
---|---|
α i j \alpha_{ij} αij, β i j \beta_{ij} βij | IF组合系数(与频率 f 1 f_1 f1, f 2 f_2 f2相关) |
( α i j 2 − β i j 2 ) (\alpha_{ij}^2 - \beta_{ij}^2) (αij2−βij2) | 组合观测值的方差放大因子 |
PPP随机模型——观测值先验精度
假定不同系统和不同频率的伪距观测值先验精度或相位观测值先验精度相当,考虑到载波相位观测值量测精度是伪距观测值的千分之一,其典型经验值通常为伪距的千分之一,如下表。
观测值类型 | 精度公式表示 | 典型经验值 | 精度对比关系 |
---|---|---|---|
伪距观测值 | δ P \delta_P δP | 0.3 m | 基准值 |
载波相位观测值 | δ L \delta_L δL | 3 mm | δ L = δ P 1000 \delta_L = \frac{\delta_P}{1000} δL=1000δP |
PPP随机模型——权函数
以GAMIT (Gps At MIT) 和RTKLib软件为例,通常采用的基于高度角的随机模型权函数表示为:
w
(
ζ
)
=
a
2
+
b
2
sin
2
e
(2.16)
w(\zeta) = a^2 + \frac{b^2}{\sin^2 e} \quad \text{(2.16)}
w(ζ)=a2+sin2eb2(2.16)
符号 | 含义 | 典型取值 |
---|---|---|
a a a | 基准噪声参数 | 0.003-0.01 m |
b b b | 高度角相关参数 | 0.002-0.005 m |
e e e | 卫星高度角(单位:度) | 0°-90° |
ζ \zeta ζ | 权函数自变量 | 通常为高度角 e e e |
PS:当 e → 0 ° e\to0° e→0°时 sin e → 0 \sin e\to0 sine→0,权值 w ( ζ ) → ∞ w(\zeta)\to\infty w(ζ)→∞,体现低高度角观测值降权。