无缝集成:将LangChain完美适配至ChatGLM-zhipu API

前言

image.png 前段时间智谱AI推出了新一代LLM-GLM4,随之而来智谱AI发布了新版本[API SDKv4]
由于最近我在自研自己的智能摘要平台,除了OpenAI,想着也能接入我们自己国产大模型之光GLM,一个调用方便,一个是为了降低Token成本🤭。GLM4和GLM3-turbo经过Prompt实测能达到我们智能摘要要求 (这项测试后面再进行分享)。
接下来就是要集成进应用,目前大模型的应用开发框架,Langchain无疑是最热的一个。 LangChain经过23年一年的开发,1月初发布了v0.1.0第一个稳定版本,将Langchain划分为三块

  • LangChain
  • LangChain-Community
  • LangChain-Core

目前第三方实现,都集中在LangChain-Community这个库中,马上我就搜索了一下有没有ZhipuAI这个第三方实现,一看还真有 [Zhipu AI]

一. 问题

image.png 根据文档,编写测试代码操作

from langchain_community.chat_models import ChatZhipuAI

model = ChatZhipuAI(
    model="chatglm_turbo",
    api_key="xxxx",
)

print(model.invoke("hello, what today is today?"))

测试发现报错

image.png 发现缺少了model_api,联想到Zhipu AI发布了新的API v4版本新SDK,我猜测应该是LangChain-Community上面的ChatZhipuAI适配的应该是v3版本的SDK

验证猜测

查看LangChain源码

# file: langchain_community/chat_models/zhipuai.py

def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        try:
            import zhipuai

            self.zhipuai = zhipuai
            self.zhipuai.api_key = self.zhipuai_api_key
        except ImportError:
            raise RuntimeError(
                "Could not import zhipuai package. "
                "Please install it via 'pip install zhipuai'"
            )

这里发现导入zhipuai这个库,再看一下zhipuai这个库[PyPi文档]

image.png 这里发现新版本zhipuai最新是2.0.1版本,调用方法和都已经发生了变化,明显是2.0版本不再兼容之前的1.0版本了,所以LangChain上的ChatZhipuAI 不能用了,要想使用只能自己动手适配🔧。

为了提高大家的排错效率,避免重复踩坑,我也给LangChain提了[issue](开源自觉)

注:啰嗦介绍了背景和问题一大堆,其实也是给大家提供一个发现问题定位问题的一个思路😊

二. 适配

LangChain框架对底层的LLM已经封装好了,我们自定义的ChatModel只要继承BaseChatModel,实现相关抽象方法即可。

class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
    ...
    @abstractmethod
    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        """Top Level call"""
    @property
    @abstractmethod
    def _llm_type(self) -> str:
        """Return type of chat model."""

有个好的建议,我们可以参考Langchain很多已实现的库,如ChatOpenAI。接下来就实现我们的ChatZhipuAI

class ChatZhipuAI(BaseChatModel):
    ...
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        try:
            from zhipuai import ZhipuAI

            if not is_zhipu_v2():
                raise RuntimeError(
                    "zhipuai package version is too low"
                    "Please install it via 'pip install --upgrade zhipuai'"
                )

            self.client = ZhipuAI(
                api_key=self.zhipuai_api_key,  # 填写您的 APIKey
            )
        except ImportError:
            raise RuntimeError(
                "Could not import zhipuai package. "
                "Please install it via 'pip install zhipuai'"
            )
     def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        stream: Optional[bool] = None,
        **kwargs: Any,
    ) -> ChatResult:
        """Generate a chat response."""

        should_stream = stream if stream is not None else self.streaming
        if should_stream:
            stream_iter = self._stream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return generate_from_stream(stream_iter)

        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {
            **params,
            **({"stream": stream} if stream is not None else {}),
            **kwargs,
        }
        response = self.completion_with_retry(
            messages=message_dicts, run_manager=run_manager, **params
        )
        return self._create_chat_result(response)

这里在__init__的时候,加了一个V2版本的判断,剩下就是实现_generate方法。Langchain支持同步异步、流式、批量等等多种操作,我们根据[zhipuai SDK说明](和Langchain库一一实现即可。(详细代码我后面有介绍)

测试验证

from langchain_community.chat_models import ChatZhipuAI

zhipuai_chat = ChatZhipuAI(
    temperature=0.5,
    api_key="your-api-key",
    model_name="glm-3-turbo",
)

print(model.invoke("hello, what today is today?"))

成功~🎉

三. 提交LangChain

问题

在提交进行流水线检查时,发现单元测试没过,仔细检查发现原来遇到了版本冲突

Because no versions of zhipuai match >2.0.1,<3.0.0 and zhipuai (2.0.1) depends on pydantic (>=2.5.2), zhipuai (>=2.0.1,<3.0.0) requires pydantic (>=2.5.2). And because javelin-sdk (0.1.8) depends on pydantic (>=1.10.7,<2.0.0) and no versions of javelin-sdk match >0.1.8,<0.2.0, zhipuai (>=2.0.1,<3.0.0) is incompatible with javelin-sdk (>=0.1.8,<0.2.0). So, because langchain-community depends on both javelin-sdk (^0.1.8) and zhipuai (^2.0.1), version solving failed.

这是由于zhipuai 依赖的pydantic版本太高和Langchain中集成的三方库有版本依赖冲突。 LangChain推荐采用pydantic 1.0+。

同时顺手也给zhipuai API SDK提了一个[issue] 😊

最后

截止发文前,版本依赖冲突还没有解决,观察后续的进展,有需要的同学可以自己先自定义本地集成进项目。


DeepRead_Logo_350X150.png

目前我正在制作研发的开源智能摘要应用-帝阅DeepRead,支持ChatGPT、ChatGLM,即将上线 这是一款主打智能摘要的应用,目标是成为你的智能侍读助理,帮助你提升阅读效率,归纳收集各类好文。

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

<think>好的,我需要帮助用户了解如何部署LangChain与智谱AI的集成。首先,我需要回顾用户提供的引用内容,看看里面有没有相关的步骤或信息。 引用[1]提到智谱AI推出了GLM4和API SDKv4,用户想将GLM集成到自己的应用中,并提到了使用LangChain。引用[2]和[4]则提到了使用LangChain构建SpringBoot应用和RAG应用的例子,说明可能有相关的项目或教程。引用[3]展示了在Python中导入模块并实例化模型,这可能与调用API有关。 接下来,我需要整理部署集成的步骤。通常,集成大模型需要几个步骤:安装SDK、获取API密钥、编写代码调用API、结合LangChain框架。用户可能需要具体的代码示例和配置方法。 首先,安装必要的库。根据引用[3],可能需要安装langchain-openai,但智谱AI可能有自己的SDK,比如zhipuai。需要确认是否正确,可能需要安装zhipuai库和langchain。 然后,获取API密钥。用户需要在智谱AI的平台上注册并获取API key,这通常在环境变量中设置,避免硬编码。 接下来,实例化模型。引用[3]中使用了BaseChatOpenAI,但智谱AI可能需要不同的类,比如可能有一个ZhipuAI的封装类,或者使用langchain的接口进行适配。可能需要查看智谱AI的官方文档,或者参考引用[2]中的SpringBoot项目结构。 另外,引用[2]中的langchain-springboot项目可能提供了Java集成的例子,但用户的问题可能更关注Python方面的集成。不过,可能需要提到不同语言的实现方式。 在代码示例部分,需要展示如何导入正确的模块,设置API密钥,创建模型实例,并调用生成方法。比如,使用zhipuai库的ChatGLM,并集成到LangChain的链中。 还需要考虑LangChain的组件,如PromptTemplate、LLMChain等,如何与智谱AI的模型结合。引用[4]提到内置组件和数据处理,可能涉及如何将模型输出与前端组件结合。 最后,部署注意事项,如错误处理、异步调用、性能优化等,可能需要根据引用[1]中的性能测试经验来建议用户进行测试和调整。 可能还需要生成相关问题,比如如何优化集成后的性能,如何处理API限流,或者如何结合LangChain的其他模块如内存或代理。 需要确保步骤清晰,代码正确,并且引用相关的引用内容。比如在安装步骤引用[3],在项目结构引用[2]和[4]。</think>### LangChain与智谱AI集成部署指南 #### 一、环境准备 1. **安装依赖库** - 安装智谱AI官方SDK:`pip install zhipuai` - 安装LangChain核心库:`pip install langchain` - 可选工具链:`pip install langchain-community`(用于扩展组件)[^1][^2] 2. **获取API密钥** - 登录智谱AI开放平台(https://open.bigmodel.cn/),创建应用并获取API Key。 #### 二、基础集成步骤 1. **配置环境变量** ```python import os os.environ["ZHIPUAI_API_KEY"] = "your_api_key_here" # 替换实际密钥 ``` 2. **模型实例化** ```python from langchain_community.llms import ZhipuAI # 假设存在该封装类[^3] glm_model = ZhipuAI(model="glm-4", temperature=0.7) ``` 3. **调用生成接口** ```python response = glm_model.invoke("解释量子计算原理") print(response) ``` #### 三、高级应用开发 1. **构建对话链(Chain)** ```python from langchain_core.prompts import ChatPromptTemplate prompt = ChatPromptTemplate.from_template("用{style}风格翻译:{text}") chain = prompt | glm_model # 使用管道运算符组合组件[^4] result = chain.invoke({"style": "文言文", "text": "Hello World"}) ``` 2. **实现RAG应用** ```python from langchain_community.vectorstores import Chroma from langchain_community.embeddings import ZhipuEmbeddings # 创建向量数据库 embeddings = ZhipuEmbeddings() vectorstore = Chroma.from_documents(documents, embeddings) # 构建检索链 retriever = vectorstore.as_retriever() rag_chain = {"context": retriever, "question": RunnablePassthrough()} | prompt | glm_model ``` #### 四、部署注意事项 1. **性能优化** - 启用流式响应:`glm_model.stream("问题")` 减少等待感知[^1] - 设置超时参数:`ZhipuAI(timeout=10)` 2. **错误处理** ```python try: response = glm_model.invoke(...) except APIError as e: print(f"API调用失败:{e.status_code}") ``` #### 五、参考项目实践 可参考开源项目`langchain-springboot`的Java实现方式,学习多语言集成模式[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值