【图算法】(2) 网络的基本静态几何特征(一),附networkx完整代码

大家好,今天和大家分享一下图算法中的静态几何特征,以及如何使用python中的networkx库实现度分布、效率、直径、距离、度-度相关性、介数、核度。内容较多,可通过右侧目录栏跳转。


1. 度分布

1.1 节点的度

以无向网络为例。在网络中,节点 V_{i} 的邻边数 K_{i} 称为该节点的度,是根据网络的邻接矩阵 A_{ij} 求得的。计算公式如下:

K_{i}=\sum _{j=1}^{N}A_{ij} = \sum_{i=1}^{N}A_{ij}

对网络中所有节点的度求平均,可得到网络的平均度 \hat{k}

\hat{k} = \frac{1}{N}\sum _{i=1}^{N}k_{i}=\frac{2L}{N}=tr(A^{2})/N

无向无权图的邻接矩阵 A 的二次幂 A^{2} 的对角元素 a_{ii}^{(2)} 就是节点 V_{i} 的邻边,即 k_{i}=a_{ii}^{(2)} 。实际上,无向无权图的邻接矩阵 A^{2} 的第 i 行或第 i 列的元素之和也是。从而无向无权网络的平均度就是 A^{2} 对角线元素之和除以节点数,即 \hat{k} = tr(A^{2})/N,式中 tr(A^{2})/N 表示矩阵 A^{2} 的迹,即对角线元素之和。


1.2 度分布

大多数实际网络中的节点的度是满足一定的概率分布的。定义 p(k) 为网络中度为 k 的节点在整个网络中所占的比例

规则网络:由于每个节点具有相同的度,所以其度分布集中在一个单一尖峰上,是一种Delta分布。

完全随机分布:度分布具有泊松分布的形式,每一条边的出现概率是相等的,大多数节点的度是基本相同的,并接近于网络平均度 ,若远离峰值,度分布则按指数形式急剧下降。把这类网络称为均匀网络。

无标度网络:具有幂指数形式的度分布,即 p(k)\propto k^{-\gamma } ,所谓无标度是指一个概率分布函数 F(x) 对于任意给定常数 a 存在常数 b 使得 F(ax) 满足 F(x)=bF(x)

幂律分布:是唯一满足无标度条件的概率分布函数。许多实际大规模无标度网络,其幂指数通常为 2\leq \gamma \leq 3 ,绝大多数节点的度相对很低,也存在少量度值相对很高的节点,把这类网络称为非均匀网络(异质网络)

指数度分布网络:满足 p(k)\propto e^{-K/k} ,式中 k>0 一般为常数。


1.3 累计度分布

使用累计度分布函数描述度的分布情况,它与度分布的关系是: p_{k}=\sum_{x=k}^{\propto}p(x) ,它表示度不小于k的节点的概率分布。

度分布为幂律分布,即 p(k)\propto k^{-\gamma } ,则相应的累积度分布函数符合幂指数为 \gamma -1 的幂分布:

p_{k}\propto \sum_{x=k}^{\bowtie }x^{-\gamma }\propto k^{-(\gamma -1)}

度分布为指数分布,即 p(k)\propto e^{-K/k},则相应的累计度分布函数符合同指数的指数分布

p_{k}\propto \sum_{x=k}^{\bowtie }e^{-x/k}\propto e^{-K/k}


1.4 代码实现

1.4.1 泊松分布--ER随机网络

度分布的峰值所对应的横坐标就是网络的平均度

创建ER网络: nx.erdos_renyi_graph( 节点数, 连边概率 )

import networkx as nx
import numpy as np
import matplotlib.pyplot as plt

# 创建一个ER随机网络为例
n = 10000  # 网络节点数
p = 0.001  # 连边的概率0.001
# 生成ER网络
ER = nx.erdos_renyi_graph(n, p)

# 计算获取网络每个节点的度
d = dict(nx.degree(ER))
# 计算平均度=总度数/结点数
d_avg = sum(d.values()) / len(ER.nodes)  # 10.026

# 获取所有的度的值,及其对应的概率
# x记录有哪些度值
x = list(range(max(d.values())+1))
# 获取每个度值出现的次数
d_list = nx.degree_histogram(ER)
# y计算每个度值对应的出现概率=每个度值对应的结点个数/总节点数
y = np.array(d_list) / n

# 绘制度分布
plt.plot(x, y, 'o-')
plt.xlabel('du_num')
plt.ylabel('du_prob')
plt.show()

 度分布曲线如下:


1.4.2 幂律分布--BA无标度网络

BA网络需要在双对数坐标轴下绘制,并且由于0值对应的无穷大没有意义,绘制时需要把0值剔除掉。

创建BA网络:nx.barabasi_albert_graph( 节点数, 平均度/2 )

import networkx as nx
import numpy as np
import matplotlib.pyplot as plt

n = 10000  # 网络节点数
m = 3  # 平均度=6
# 生成网络
BA = nx.barabasi_albert_graph(n, m)

# 获取网络每个节点的度
d = dict(nx.degree(BA))
# 计算平均度=节点度总数/节点总数
d_avg = sum(d.values()) / len(BA.nodes)  # 5.9982

# 获取所有出现的度值
x = list(range(max(d.values())+1))
# 获取每个度出现的次数
d_list = nx.degree_histogram(BA)
# 计算没个度值出现的概率=每个度值对应的结点个数/总结点数
y = np.array(d_list) / len(BA.nodes)

#(1)在普通坐标轴下绘制度分布图
plt.plot(x, y, 'o-', color='b')
plt.xlabel('du_num')
plt.ylabel('du_prob')
plt.show()

#(2)在双对数坐标轴下绘制,由于坐标中存在0出现无穷大的情况
plt.plot(x, y, 'o-', color='r')
plt.xscale('log')
plt.yscale('log')
plt.xlabel('du_num')
plt.ylabel('du_prob')
plt.grid()
plt.show()

#(3)在双对数坐标轴下绘制,并且把点0值坐标排除
new_x = []
new_y = []
# 删除0值
for i in range(len(x)):
    if y[i] != 0:
        new_x.append(x)
        new_y.append(y)

# 绘图
plt.plot(new_x, new_y, 'o-', color='g')
plt.xscale('log')
plt.yscale('log')
plt.xlabel('du_num')
plt.ylabel('du_prob')
plt.grid()
plt.show()

第一张是在普通坐标系下,第二张是双对数坐标系下,第三张是双对数坐标系下删除0值


2. 网络的效率、直径和平均距离

2.1 方法介绍

网络中的两节点 V_{i} 和 V_{j} 之间经历边数最少的一条简单路径(经历的边各不相同),称为测地线

测地线的边数 d_{ij} 称为两节点 V_{i} 和 V_{j} 之间的距离两节点之间的最短路径长度

1/d_{ij} 称为节点 V_{i} 和 V_{j} 之间的效率,记为 \varepsilon _{ij},通常效率用来度量节点之间的信息传递速度。当 V_{i} 和 V_{j} 之间没有路径连通时,d_{ij}=\Join,而 \varepsilon _{ij}=0 。所以效率很适合度量非全连通网络。

网络的直径D定义为所有距离 d_{ij} 中的最大值D=max_{1\leq i,j \leq N}d_{ij}

平均距离(特征路径长度)L定义为所有节点对之间距离的平均值,它描述了网络中节点间的平均分离程度,即网络有多小,计算公式为:

L=\frac{1}{N^{2}}\sum_{N}^{j=1}\sum_{N}^{i=1}d_{ij}

对于无向图来说,d_{ij}=d_{ji} 且 d_{ii}=0,那么上面的公式可以简化为:

L=\frac{2}{N(N-1)}\sum_{i=1}^{N}\sum_{j=i+1}^{N}d_{ij}

很多实际网络虽然节点数巨大,但平均距离却很小,这称为小世界效应。


2.2 代码实现

网络直径: nx.diameter( Graph )

两个节点之间的效率: nx.efficiency( Graph, 节点1, 节点2 )

两个节点之间的最短路径: nx.shortest_path_length( Graph, 节点1, 节点2 )

网络的局部效率: nx.local_efficiency( Graph )

网络的全局效率: nx.global_efficiency( Graph )

网络的平均距离: nx.average_shortest_path_length( Graph )

import networkx as nx

#(1)直径
# 创建1000各节点,平均度为6的BA网络
G1 = nx.barabasi_albert_graph(1000, 3)
# 计算网络的直径=6
print( nx.diameter(G1) )

#(2)效率
# 计算节点1和5之间的效率=0.5
print( nx.efficiency(G1,1,5) )

#(3)最短路径
# 计算节点1和5之间最短路径长度=2
print( nx.shortest_path_length(G1,1,5) )

# 效率==最路距离长度的倒数

#(4)局部效率
print( nx.local_efficiency(G1) )  # 0.03958432238854824

#(5)全局效率
print( nx.global_efficiency(G1) )  # 0.30804264264331954

#(6)求整个网络的平均距离
# 1k个节点只有3.4的平均距离,距离很小
print( nx.average_shortest_path_length(G1) )  # 3.4374934934934935

4. 度-度相关性

4.1 基于最近邻平均度值的度-度相关性

度-度相关性描述了网络中度大的节点和度小的节点之间的关系。若度大的节点倾向于和度大的节点连接,则网络是度-度正相关的;反之,若度大的节点倾向于和度小的节点连接,则网络是度-度负相关的

节点 V_{i} 的最近邻平均度值把节点 Vi 的邻居的度值加起来求平均,公式如下:

 k_{nn,i}=[\sum _{j}a_{ij}k_{j}] / k_{i}

式中,k_{i} 表示节点 V_{i} 的度值,a_{ij} 为邻接矩阵元素。

所有度值为 k 的节点的最近邻平均度值的平均值 k_{nn}(k),公式如下:

k_{nn}(k)=[\sum _{i,k_{i}=k}k_{nn,i}] / [N\cdot p(k)]

式中,N 表示节点总数,p(k) 为度分布函数。

如果 k_{nn}(k) 是随着 k 上升的增函数,则说明度值大的节点倾向于和度值大的节点连接,网络具有正相关特性,称之为同配网络;反之是单调递减函数,则网络具有负相关特性,称之为异配网络。


4.2 代码实现

import networkx as nx
# 参数是网络
def average_nearest_neighbor_degree(G):
    # 获取所有可能的度
    k = set([G.degree(i) for i in G.nodes()])
    # 从小到大排序所有的度
    sorted_k = sorted(k)
    
    # 求所有度值对应的最近邻平均度
    k_nn_k = []
    for ki in sorted_k:
        c = 0
        k_nn_i = 0
        for i in G.nodes():
            if G.degree(i) == ki:
                k_nn_i += sum([G.degree(j) for j in list(nx.all_neighbors(G,i))]) / ki
                c += 1
        k_nn_k.append(k_nn_i/c)
    
    # 返回所有可能的度,以及度对应的最近邻平均度
    return sorted_k, k_nn_k


5. 介数

5.1 概念介绍

要衡量一个节点的重要程度,其度值当然可以作为一个衡量指标,但又不尽然,例如在社会网络中,有的节点的度虽然很小,但它可能是两个社团的中间联络人,如果去掉该节点,那么就会导致两个社团的联系中断,因此该节点在网络中起到极其重要的作用。对于这样的节点,需要定义另一种衡量指标,这就引出了另一种重要的全局几何量--介数

介数分为节点介数和边介数两种,反映了节点或边在整个网络中的作用和影响力

节点的介数 Bi 定义如下:

B_{i}=\sum _{j \neq l \neq i }[N_{jl} (i)/N_{jl}]

式中,N_{jl} 代表节点 V_{j} 和 V_{l} 之间的最短路径条数,N_{jl}(i) 表示节点 V_{j} 和 V_{l} 之间的最短路径经过节点 V_{i} 的条数。

边的介数 Bij 定义如下:

B_{ij}=\sum _{(l,m) \neq(i,j) }[N_{lm} (e_{ij})/N_{lm}]

式中,N_{lm} 代表节点 V_{l} 和 V_{m} 之间的最短路径条数,N_{lm}(e_{ij}) 表示节点 V_{l} 和 V_{m} 之间的最短路径经过边 e_{ij} 的条数


5.2 代码实现

计算每个节点的介数: nx.betweenness_centrality( Graph )

计算每条连边的介数: nx.edge_betweenness_centrality( Graph )

import networkx as nx
# 首先创建一个BA无标度网络
BA = nx.barabasi_albert_graph(20, 2)

#(1)计算每个节点的介数
bc = nx.betweenness_centrality(BA)
# 以字典保存,键是节点,值是介数
print(bc)
# 获取介数最大的节点标签
max_id = max(bc, key=bc.get)
print(max_id)  # 3 

#(2)计算每条边的介数
ebc = nx.edge_betweenness_centrality(BA)
# 以字典保存,键是边,值是介数
print(ebc)
# 获取介数最大的连边的标签
max_ebc = max(ebc, key=ebc.get)
print(max_ebc)  #(3,8)

# 绘制网络
nx.draw(BA, node_size=500, with_labels=True)

绘制网络图


6. 核度

6.1 概念介绍

一个图的 k-核 是指反复去掉度值小于 k 的节点及其连线后,所剩余的子图,该子图的节点数就是该核的大小

若一个节点属于 k-核,而不属于 (k+1)-核 ,则此节点的核度为 k

节点核度的最大值叫做网络的核度。

节点的核度可以说明节点在核中的深度核度的最大值自然就对应着网络结构中最中心的位置。k-核 解析可用来描述度分布所不能描述的网络特征,揭示源于系统特殊结构和层次性质。

如下图所示,首先设定一个阈值ks=1,将网络中所有节点的度小于等于1的节点全部删除,直到网络中不存在度小于等于1的节点。有的节点一开始的度是大于1的,但是由于邻接的节点的度是1被删除了,从而导致这个节点的度小于等于1,也要被删除。


6.2 代码实现

计算每个节点的核度: nx.core_number( Graph )

import networkx as nx
# 首先创建一个club网络
kcg = nx.karate_club_graph()

# 计算每个节点的核度
ks = nx.core_number(kcg)
# 以字典类型保存,键是节点,值是节点的核度
print(ks)

# 获取核度最大的节点标签
max_id = max(ks, key=ks.get)
print(max_id)  # 0

# 绘制网络
nx.draw(BA, node_size=500, with_labels=True)

绘制网络图

  • 25
    点赞
  • 138
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

立Sir

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值