【路径规划】(3) RRT 算法求解最短路,附python完整代码

本文介绍了RRT算法,一种用于机器人路径规划的随机树搜索方法。该算法由S.M.LaValle提出,通过随机采样和扩展生成从起点到目标点的无碰撞路径。虽然存在效率低、路径不平滑等问题,但因其无需预先处理环境信息和适应复杂环境而被广泛应用于无人机等领域。文章提供了Python代码示例,展示了RRT算法的实现过程,并给出了仿真结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,今天和各位分享一下机器人路径规划中的 RRT 算法,感兴趣的点个关注,文末有 python 代码,那我们开始吧。


1. 算法介绍

RRT 算法是由学者 S.M.LaValle 提出来的路径规划算法。该算法是将空间中的一个起始点当作根节点,在空间中利用增量方式进行随机采样,然后向外延伸扩展增加叶节点。重复该步骤直到获得一个从起点到目标点的树,最后回溯找到从根节点到目标点的无碰撞的路径。 

快速搜索随机树(RRT)算法是一种增量式采样的搜索方法,将它应用于路径规划时不需要任何参数整定,也不需要事先对环境信息进行处理和存储,具有良好的适应性,适合解决复杂环境以及多种约束条件的路径规划问题。 

算法优点:

(1)RRT 算法不需要启发式函数,可以在存在复杂障碍物的环境里快速规划出一条安全路径,且更适合实际应用,目前常被用于无人机的运动规划中。

(2)RRT 的快速迭代生长方式决定了其在高维非凸空间的搜索优势

算法缺点:

(1)稳定性不佳,且内存消耗较大。扩展树生长方向随机,重复规划结果却有很大差异。

(2)随机性采样导致相对效率较低。由于快速扩展随机树有随机采样性,没有目标启发导向,因此在采样过程中有很多无效采样节点,致使效率相对变低。

(3)路径曲折冗余点较多,光滑性不佳。在 RRT 生成的路径中有许多无用的点,这些冗余点使得路径长度增多。

(4)无法在动态障碍物中有效检测路径,不适合于动态环境规划与避障


2. 算法原理

传统 RRT 算法计算流程可分为两个阶段:

第一个阶段。在任务环境中,以算法初始点作为根节点,通过随机采样、逐步迭代地方式,向任务环境中进行扩展,形成一棵随机树,通过判定采样点是否包含目标点或在目标范围内,来判断是否完成随机树的构造,结束采样;

第二阶段。在随机树中从目标点依次往回遍历,直到寻回根节点,即可得到一条从初始点到目标点的有效路径。RRT的具体扩展方式如下图所示。 

首先,以初始点 Pinit 作为随机树的

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

立Sir

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值