【标准化方法】(2) Layer Normalization 原理解析、代码复现,附Pytorch代码

大家好,今天和各位分享一下深度学习中常见的标准化方法,在 Transformer 模型中常用的 Layer Normalization,从数学公式的角度复现一下代码。

看本节前建议各位先看一下 Batch Normalizationhttps://blog.csdn.net/dgvv4/article/details/130567501

Layer Normalization 的论文地址如下:https://arxiv.org/pdf/1607.06450.pdf


1. 原理介绍

深层网络训练时,网络层数的增加会增加模型计算负担,同时也会导致模型变得难以训练。随着网络层数的增加,数据的分布方式也会随着层与层之间的变化而变化,这种现象被称为内部协变量偏移(Internal Convariate Shift, ICS)。这要求模型训练时必须使用较小的学习率,且需要慎重地选择权重初值ICS 导致训练速度减慢,同时也导致使用饱和的非线性激活函数(如sigmoid,正负两边都会饱和梯度为 0)时出现梯度消失问题。

为解决内部协方差变化(ICS),思路是固定每一层输出的均值和方差,即层归一化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

立Sir

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值