超火的去归一化模型Transformers without Normalization详解及代码复现

模型概述

在深度学习领域,Transformer架构的创新一直是研究热点。本文介绍的模型是一种基于Transformer架构的创新变体, 摒弃了传统的归一化层 ,采用了一种名为 DyT机制 的简单技术来替代。

这种模型结构由多个编码器层和一个解码器层组成,主要应用于自然语言处理任务。通过去除归一化层,模型不仅简化了结构,还在某些任务上展现出了 同等甚至更好的性能 ,为Transformer架构的优化提供了新的思路。

DyT机制

在Transformer架构的创新中,Dynamic Tanh (DyT)机制作为一种革命性的归一化层替代方案,引起了广泛关注。这种简单而高效的技术通过tanh函数对输入进行非线性变换,巧妙地保留了归一化层对极端值的压缩效果。

DyT的数学定义如下:

DyT(x) = γ · tanh(αx) + β

其中,α是一个可学习参数,用于控制tanh函数的缩放因子,tanh函数利用其有界性抑制极端值,γ和β是可学习的、逐通道的向量参数,允许输出调整到任意尺度。

DyT机制的实现非常简洁,仅需9行代码即可完成:

class DyT
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值