用户消费行为分析

数据一览

数据字段:user_id,order_dt(购买日期),order_products(购买 产品数量),order_amount(购买金额)
数据时间:1997年1月~1998年6月用户行为数据,约6万条

调用数据和库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
%matplotlib inline 
#作用就是这样图象就会出现在Notebook里面,而不是一个新窗口里。在pycharm上要显示的话:就要加上一句plt.show()
plt.style.use('ggplot')#更改绘图风格,R语言绘图库的风格
plt.rcParams['font.sans-serif']=['SimHei']
columns=['user_id','order_dt','order_products','order_amount']
df=pd.read_table('CDNOW_master.txt',names=columns,sep='\s+')#sep='\s+'q匹配任意个空格
df.head()

运行结果:

user_idorder_dtorder_productsorder_amount
0119970101111.77
1219970112112.00
2219970112577.00
3319970102220.76
4319970330220.76

这里可以看出:
1.日期格式需要转换
2.存在同一个用户一天内购买多次行为

df.describe()

运行结果:

user_idorder_dtorder_productsorder_amount
count69659.0000006.965900e+0469659.00000069659.000000
mean11470.8545921.997228e+072.41004035.893648
std6819.9048483.837735e+032.33392436.281942
min1.0000001.997010e+071.0000000.000000
25%5506.0000001.997022e+071.00000014.490000
50%11410.0000001.997042e+072.00000025.980000
75%17273.0000001.997111e+073.00000043.700000
max23570.0000001.998063e+0799.0000001286.010000

 可以看出:

1.用户平均每笔订单购买2.4个商品,标准差2.3,稍微有点波动,属于正常。然而75%分位数的时候,说明绝大多数订单的购买量都不多,围绕在2~3个产品左右;

2.购买金额,反映出大部分订单消费金额集中在中小额,30~45左右
 

df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 69659 entries, 0 to 69658
Data columns (total 4 columns):
 #   Column          Non-Null Count  Dtype  
---  ------          --------------  -----  
 0   user_id         69659 non-null  int64  
 1   order_dt        69659 non-null  int64  
 2   order_products  69659 non-null  int64  
 3   order_amounts   69659 non-null  float64
dtypes: float64(1), int64(3)
memory usage: 2.1 MB

数据预处理

df['order_date']=pd.to_datetime(df['order_dt'],format='%Y%m%d')
"""
format参数:按照指定的格式去匹配要转换的数据列。
%Y:四位的年份1994   %m:两位月份05  %d:两位月份31  
%y:两位年份94  %h:两位小时09  %M:两位分钟15    %s:两位秒 
将order_dt转化成精度为月份的数据列
"""
df['month'] = df['order_date'].dt.to_period('M')#将日期转换为YYYY-MM
# 在这里卡了好久,astype('datetime64[M]')会报错
df.head()
# df.info()

运行结果:

user_idorder_dtorder_productsorder_amountorder_datemonth
0119970101111.771997-01-011997-01
1219970112112.001997-01-121997-01
2219970112577.001997-01-121997-01
3319970102220.761997-01-021997-01
4319970330220.761997-03-301997-03

用户整体消费趋势分析(按月份)

# 按月份统计产品购买数量,消费金额,消费次数,消费人数
plt.figure(figsize=(20,15))#单位为英寸
# 每月的产品购买数量
plt.subplot(221)#两行两列,占据第一个位置
df.groupby(by='month')['order_products'].sum().plot()
# 默认折线图
plt.title('每月的产品购买量')
# 每月的消费金额
plt.subplot(222)
df.groupby(by='month')['order_amount'].sum().plot()
plt.title('每月的消费金额')
# 每月的消费次数
plt.subplot(223)
df.groupby(by='month')['user_id'].count().plot()
plt.title('每月的消费次数')
# 每月的消费人数(根据user_id进行去重统计,再计算个数)
plt.subplot(224)
df.groupby(by='month')['user_id'].apply(lambda x:len(x.drop_duplicates())).plot()
# apply和map
plt.title('每月的消费人数')

运行结果:

Text(0.5, 1.0, '每月的消费人数')

分析结果:

  • 图一可以看出,前三个月销量非常高,而以后销量较为稳定,并且稍微呈现下降趋势
  • 图二可以看出,前三个月消费金额较高,与消费数量成正比例关系,三月份过后下降严重,并呈现下降趋势,思考原因?1:跟月份有关,在我国来1,2,3月份处于春节前后。2.公司在1,2,3,月份的时候是否加大了促销力度
  •  图三可以看出,前三个月订单数在10000左右,后续月份的平均消费单数在2500左右
  •  图四可以看出,前三个月消费人数在8000~10000左右,后续平均消费消费在2000不到的样子
  • 总结:所有数据显示,97年前三月消费事态异常,后续趋于常态化
     

用户个体消费分析

1.用户消费金额,消费次数(产品数量)描述统计
user_grouped = df.groupby('user_id').agg({'order_products': 'sum', 'order_amount': 'sum'})
# 这里也不能照搬视频原来的代码,会报错说日期格式无法求和,所以这里挑出了两个字段赋予聚合 方法
print(user_grouped.describe())
print('用户数量:',len(user_grouped))

运行结果:

       order_products  order_amount
count    23570.000000  23570.000000
mean         7.122656    106.080426
std         16.983531    240.925195
min          1.000000      0.000000
25%          1.000000     19.970000
50%          3.000000     43.395000
75%          7.000000    106.475000
max       1033.000000  13990.930000
用户数量: 23570
  • 从用户的角度:用户数量23570个,每个用户平均购买7个,但是中位数只有3,
  • 并且最大购买量为1033,平均值大于中位数,属于典型的右偏分布
  • 从消费金额角度:平均用户消费106,中位数43,并且存在土豪用户13990,结合分位数和最大值来看,平均数与75%分位数几乎相等,
  • 属于典型的右偏分布,说明存在小部分用户(后面的25%)高额消费
#绘制每个用户的产品的购买量与消费金额散点图
df.plot(kind='scatter',x='order_products',y="order_amount")

运行结果:

<Axes: xlabel='order_products', ylabel='order_amount'>

  • 从图中可知,用户的消费金额与购买量呈现线性趋势,每个商品均价15左右
  • 订单的极值点比较少(消费金额>1000,或者购买量大于60),对于样本来说影响不大,可以忽略不记。
2.用户消费分布图
plt.figure(figsize=(12,4))
#figsize:指定figure的宽和高,单位为英寸;
plt.subplot(121)
plt.title('每个订单的消费金额')
df['order_amount'].plot(kind='hist',bins=50)
#hist直方图
#bins:区间分数,影响柱子的宽度,值越大柱子越细。宽度=(列最大值-最小值)/bins
#消费金额在100以内的订单占据了绝大多数
plt.subplot(122)
plt.title('每个uid购买的数量')
df.groupby(by='user_id')['order_products'].sum().plot(kind='hist',bins=50)

运行结果:

<Axes: title={'center': '每个uid购买的数量'}, ylabel='Frequency'>

  • 图二可知,每个用户购买数量非常小,集中在50以内
  • 两幅图得知,我们的用户主要是消费金额低,并且购买小于50的用户人数占据大多数(在电商领域是非常正常的现象)

3.用户累计消费金额占比分析(用户的贡献度)
#进行用户分组,取出消费金额,进行求和,排序,重置索引
user_cumsum=df.groupby(by='user_id')['order_amount'].sum().sort_values().reset_index()
 #修改、删除,原有索引reset
user_cumsum

运行结果:

user_idorder_amount
0101750.00
145590.00
219480.00
39250.00
4107980.00
.........
2356579316497.18
23566193396552.70
2356779836973.07
23568140488976.33
23569759213990.93

23570 rows × 2 columns

#每个用户消费金额累加
user_cumsum['amount_cumsum']=user_cumsum['order_amount'].cumsum()
user_cumsum.tail()

运行结果:

#消费金额总值
amount_total=user_cumsum['amount_cumsum'].max()
user_cumsum['prop']=user_cumsum.apply(lambda x:x['amount_cumsum']/amount_total,axis=1)
user_cumsum.tail()

 运行结果:

user_cumsum['prop'].plot()
<Axes: >

由图分析可知,前20000名用户贡献总金额的40%,剩余3500名用户贡献了60%。(2/8原则)

用户消费行为

1.首购时间
#用户分组,取最小值,即为首购时间
df.groupby(by='user_id')['order_date'].min().value_counts().plot()
# 查看 DataFrame 对象中每一列的唯一值和计数
<Axes: xlabel='order_date'>

由图可知,首次购买的用户量在1月1号~2月10号呈明显上升趋势,后续开始逐步下降,猜测:有可能是公司产品的推广力度或者价格调整所致

2.最后一次购买时间
df.groupby(by='user_id')['order_date'].max().value_counts().plot()

运行结果:

<Axes: xlabel='order_date'>

可以看出,大多数用户最后一次购买时间集中在前3个月,说明缺少忠诚用户。
随着时间的推移,最后一次购买商品的用户量呈现上升趋势,猜测:这份数据选择是的前三个月消费的用户在后面18个月的跟踪记录

用户分层

1.构建RFM模型
#透视表的使用(index:相当于groupby,values:取出的数据列,aggfunc:key值必须存在于values列中,并且必须跟随有效的聚合函数)
rfm=df.pivot_table(index='user_id',
                  values=['order_products','order_amount','order_date'],
                  aggfunc={
                      'order_date':"max",
                      "order_products":'sum',
                      'order_amount':'sum'
                  })
rfm.head()

运行结果:

order_amountorder_dateorder_products
user_id
111.771997-01-011
289.001997-01-126
3156.461998-05-2816
4100.501997-12-127
5385.611998-01-0329
# 用每个用户的最后一次购买时间-日期列中的最大值,最后再转换成天数,小数保留一位
rfm['R']=-(rfm['order_date']-rfm['order_date'].max())/np.timedelta64(1,'D')
 #取相差的天数,保留一位小数
# 这里为什么有斜杠?斜杠符号"/"在这个上下文中是用来实现日期的除法运算的,并将结果转换为天数
rfm.rename(columns={"order_products":'F','order_amount':'M'},inplace=True)
rfm.head()

运行结果:

Morder_dateFR
user_id
111.771997-01-011545.0
289.001997-01-126534.0
3156.461998-05-281633.0
4100.501997-12-127200.0
5385.611998-01-0329178.0

#RFM计算方式:每一列数据减去数据所在列的平均值,有正有负,根据结果值与1做比较,如果>=1,设置为1,否则0
# (这里为什么和1比较而不是直接和0)
def rfm_func(x):
 #x:分别代表每一列数据
    level=x.apply(lambda x:'1' if x>=1 else '0')
    label=level['R']+level['F']+level['M']
    d={'111':'重要价值客户',
        '011':'重要保持客户',
        '101':'重要发展客户',
        '001':'重要挽留客户',
        '110':'一般价值客户',
        '010':'一般保持客户',
        '100':'一般发展客户',
        '000':'一般挽留客户'}
# R是1表示已经很久未购买产品,0表示购买时间比平均购买时间接近最后购买时间,M,F水平为1表示客户购买的产品数量和产品总价较大
    result=d[label]
    return result
rfm['label']=rfm[['R','F','M']].apply(lambda x:x-x.mean()).apply(rfm_func,axis=1)
rfm.head()

运行结果:

Morder_dateFRlabel
user_id
111.771997-01-011545.0一般发展客户
289.001997-01-126534.0一般发展客户
3156.461998-05-281633.0重要保持客户
4100.501997-12-127200.0一般挽留客户
5385.611998-01-0329178.0重要保持客户

#客户分层可视化
for label,grouped in rfm.groupby(by='label'):
    x=grouped['F']#
    y=grouped['R']# 用每个用户的最后一次购买时间-日期列中的最大值,最后再转换成天数
    plt.scatter(x,y,label=label)
plt.legend()
plt.xlabel('F')
plt.ylabel('R')

 运行结果:

2.新老,活跃,回流用户分析

新用户的定义是第一次消费。 活跃用户即老客,在某一个时间窗口内有过消费。 不活跃用户则是时间窗口内没有消费过的老客。 回流用户:相当于回头客的意思。 用户回流的动作可以分为自主回流与人工回流,自主回流指玩家自己回流了,而人工回流则是人为参与导致的。

# index:相当于groupby,values:取出的数据列,aggfunc:key值必须存在于values列中,并且必须跟随有效的聚合函数
pivoted_counts=df.pivot_table(
    index='user_id',
    columns='month',
    values='order_dt',
    aggfunc='count',
).fillna(0)
pivoted_counts.head(
)

运行结果:

month1997-011997-021997-031997-041997-051997-061997-071997-081997-091997-101997-111997-121998-011998-021998-031998-041998-051998-06
user_id
11.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0
22.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0
31.00.01.01.00.00.00.00.00.00.02.00.00.00.00.00.01.00.0
42.00.00.00.00.00.00.01.00.00.00.01.00.00.00.00.00.00.0
52.01.00.01.01.01.01.00.01.00.00.02.01.00.00.00.00.00.0
# 由于浮点数不直观,并且需要转成是否消费过即可,用0、1表示
df_purchase=pivoted_counts.applymap(lambda x:1 if x>0 else 0)
# apply:作用于dataframe数据中的一行或者一列数据,
# applymap:作用于dataframe数据中的每一个元素
# map:本身是一个series的函数,在df结构中无法使用map函数,map函数作用于series中每一个元素
df_purchase .head()

运行结果:

month1997-011997-021997-031997-041997-051997-061997-071997-081997-091997-101997-111997-121998-011998-021998-031998-041998-051998-06
user_id
1100000000000000000
2100000000000000000
3101100000010000010
4100000010001000000
5110111101001100000
def active_status(data): #data:每一行数据(共18列)
    status=[]#存储用户状态(new|active|unactive|return|unreg)
    for i in range(18):#18个月
        if data[i]==0:#本月消费是否为0
            if len(status)==0: #前几个月没有任何记录
                status.append('unreg')
            else:
                if status[i-1]=='unreg':
                    status.append('unreg')
                else:
                    status.append('unactive')
        else:
            if len(status)==0:
                status.append('new')
            else:
                if status[i-1]=='unactive':
                    status.append('return')
                elif status[i-1]=='unreg':
                    status.append('new')
                else:
                    status.append('active')
    return pd.Series(status,df_purchase.columns)
purchase_states=df_purchase.apply(active_status,axis=1)
purchase_states.head()         

运行结果:

month1997-011997-021997-031997-041997-051997-061997-071997-081997-091997-101997-111997-121998-011998-021998-031998-041998-051998-06
user_id
1newunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactive
2newunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactiveunactive
3newunactivereturnactiveunactiveunactiveunactiveunactiveunactiveunactivereturnunactiveunactiveunactiveunactiveunactivereturnunactive
4newunactiveunactiveunactiveunactiveunactiveunactivereturnunactiveunactiveunactivereturnunactiveunactiveunactiveunactiveunactiveunactive
5newactiveunactivereturnactiveactiveactiveunactivereturnunactiveunactivereturnactiveunactiveunactiveunactiveunactiveunactive
purchase_states_ct=purchase_states.replace('unreg',np.NaN).apply(lambda x:pd.value_counts(x))
#查看 DataFrame 对象中每一列的唯一值和计数
purchase_states_ct.head()

运行结果:

month1997-011997-021997-031997-041997-051997-061997-071997-081997-091997-101997-111997-121998-011998-021998-031998-041998-051998-06
activeNaN1157.016811773.0852.0747.0746.0604.0528.0532.0624.0632.0512.0472.0571.0518.0459.0446.0
new7846.08476.07248NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
returnNaNNaN5951049.01362.01592.01434.01168.01211.01307.01404.01232.01025.01079.01489.0919.01029.01060.0
unactiveNaN6689.01404620748.021356.021231.021390.021798.021831.021731.021542.021706.022033.022019.021510.022133.022082.022064.0
purchase_states_ct.fillna(0).T.plot.area(figsize=(12,6))
#“.T”操作. 其实就是对一个矩阵的转置

运行结果:

  • 由图可知:灰色区域是不活跃用户,占比较大
  • 前三个月新用户,还是活跃用户呈现了上升趋势,猜测由于活动造成的影响
  • 3月份过后,紫色回流用户,红色活跃用户,都呈现下降趋势,并且趋于平稳状态
  • 3月份过后,新用户量几乎没有大量增加
#每月中回流用户占比情况(占所有用户的比例)
plt.figure(figsize=(12,6))
rate = purchase_states_ct.fillna(0).T.apply(lambda x:x/x.sum(),axis=1)
rate['return'].plot(label='return')
rate['active'].plot(label='active')
rate.head()

运行结果:

  • 由图可知,前3个月,活跃用户占比比较大,维持在7%左右,而回流用户比例在上升,由于new用户还没有足够时间变成回流用户
  • 4月份过后,不论是活跃用户,还是回流用户都呈现出下降趋势,但是回流用户依然高于活跃用户。
3.用户的购买周期
data1=pd.DataFrame({
    'a':[0,1,2,3,4,5],
    'b':[5,4,3,2,1,0]
})
#整体向下移动一个位置(默认值:axis=0)
data1.shift(axis=0)#整体向下移动一个位置(默认值:axis=0)
data1.shift(axis=1)

运行结果: 

 ab
0NaN0
1NaN1
2NaN2
3NaN3
4NaN4
5NaN5
#计算购买周期(购买日期的时间差值)

order_diff=df.groupby('user_id').apply(lambda x:x['order_date']-x['order_date'].shift())

order_diff.info()

#当前订单日期-上一次订单日期

order_diff.describe()

运行结果: 

<class 'pandas.core.series.Series'>
MultiIndex: 69659 entries, (1, 0) to (23570, 69658)
Series name: order_date
Non-Null Count  Dtype          
--------------  -----          
46089 non-null  timedelta64[ns]
dtypes: timedelta64[ns](1)
memory usage: 4.2 MB
count                         46089
mean     68 days 23:22:13.567662566
std      91 days 00:47:33.924168893
min                 0 days 00:00:00
25%                10 days 00:00:00
50%                31 days 00:00:00
75%                89 days 00:00:00
max               533 days 00:00:00
Name: order_date, dtype: object
(order_diff/np.timedelta64(1,'D')).hist(bins=20)

# 每个柱子的宽度=(最大值-最小值)/bins

运行结果: 

<Axes: >

  • 平均消费周期为68天
  • 大多数用户消费周期低于100天
  • 呈现典型的长尾分布,只有小部分用户消费周期在200天以上(不积极消费的用户),可以在这批用户消费后3天左右进行电话回访后者短信赠送优惠券等活动,增大消费频率
4.用户生命周期
#计算方式:用户最后一次购买日期(max)-第一次购买的日期(min)。如果差值==0,说明用户仅仅购买了一次
user_life=df.groupby('user_id')['order_date'].agg(['min','max'])
(user_life['max']==user_life['min']).value_counts().plot.pie(autopct='%1.1f%%')
'''
格式化成1位小数
plt.legend(['仅消费一次','多次消费'])
"%m.nf"
1 m:总宽度,包括小数点
2 n:小数部分位数
3 m>n+1, 也可以小于, 但编译结果会按实际数据输出
4 如果m过大, 会在左边补空格
'''
plt.legend(['消费一次','消费多次'])

运行结果: 

<matplotlib.legend.Legend at 0x26c04eece80>

(user_life['max']-user_life['min']).describe()

运行结果:

count                          23570
mean     134 days 20:55:36.987696224
std      180 days 13:46:43.039788104
min                  0 days 00:00:00
25%                  0 days 00:00:00
50%                  0 days 00:00:00
75%                294 days 00:00:00
max                544 days 00:00:00
dtype: object

生命周期分析:

  • 用户平均生命周期为134天,但是中位数==0,再次验证大多数用户消费了一次,低质量用户。
  • 75%分位数以后的用户,生命周期>294天,属于核心用户,需要着重维持。
4.绘制所有用户生命周期直方图+多次消费
plt.figure(figsize=(12,6))
plt.subplot(121)
((user_life['max']-user_life['min'])/np.timedelta64(1,'D')).hist(bins=15)
plt.title('所有用户生命周期直方图')
plt.xlabel('生命周期天数')
plt.ylabel('用户人数')

plt.subplot(122)
u_1=(user_life['max']-user_life['min']).reset_index()[0]/np.timedelta64(1,'D')
u_1[u_1>0].hist(bins=15)
plt.title('多次消费的用户生命周期直方图')
plt.xlabel('生命周期天数')
plt.ylabel('用户人数')

运行结果:

  • 对比可知,第二幅图过滤掉了生命周期==0的用户,呈现双峰结构
  • 二图中还有一部分用户的生命周期趋于0天,虽然进行了多次消费,但非长期用户,可针对性进行营销推广活动
  • 少部分用户生命周期集中在300~500天,属于忠诚客户,需要大力度维护此类客户

复购率和回购率分析

复购率分析
#计算方式:在自然月内,购买多次的用户在总消费人数中的占比(若客户在同一天消费了多次,也称之复购用户)
#消费者有三种:消费记录>=2次的;正在消费中人数;本月未消费用户;
#复购用户设为1    单次消费用户:0   本月没有消费记录的用户:NAN(不参与count计数)
purchase_r=pivoted_counts.applymap(lambda x:1 if x>1 else np.NaN if x==0 else 0)
purchase_r.head()
# purchase_r.sum() 每个月复购用户数
# purchase_r.count() 每个月消费用户数
(purchase_r.sum()/purchase_r.count()).plot(figsize=(12,6))

运行结果:

  • 前三个月复购率开始上升,后续趋于平稳维持在20%~22%之间。
  • 分析前三个月复购率低的原因,可能是因为大批新用户仅仅购买一次造成的
回购率分析
#计算方式:在一个时间窗口内进行了消费,在下一个窗口内又进行了消费
#1:回购用户   0:非回购用户(当前月消费了,下个未消费)   NaN:当前月份未消费
def purchase_back(data):
    status=[]#存储用户回购率状态
    for i in range(17):
        if data[i]==1:
            if data[i+1]==1:
                status.append(1)
            elif data [i+1]==0:
                status.append(0)
        else:
            status.append(np.NaN)#这里为什么要设为np.nan
    status.append(np.NaN)#填充最后一列数据
    return pd.Series(status,df_purchase.columns)
purchase_b=df_purchase.apply(purchase_back,axis=1)
purchase_b.head()
    

运行结果:

month1997-011997-021997-031997-041997-051997-061997-071997-081997-091997-101997-111997-121998-011998-021998-031998-041998-051998-06
user_id
10.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
20.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
30.0NaN1.00.0NaNNaNNaNNaNNaNNaN0.0NaNNaNNaNNaNNaN0.0NaN
40.0NaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.0NaNNaNNaNNaNNaNNaN
51.00.0NaN1.01.01.00.0NaN0.0NaNNaN1.00.0NaNNaNNaNNaNNaN
plt.figure(figsize=(12,6))
plt.subplot(211)
(purchase_r.sum()/purchase_r.count()).plot(label='复购率')
(purchase_b.sum()/purchase_b.count()).plot(label='回购率')
plt.legend()
plt.ylabel('百分比%')
plt.title('用户回购率和复购率对比图')

plt.subplot(212)
purchase_b.sum().plot(label='回购人数')
purchase_b.count().plot(label='购物总人数')
plt.xlabel('month')
plt.ylabel('人数')
plt.title('回购人数与购物总人数对比图')
plt.legend()

运行结果:

  • 回购率可知,平稳后在30%左右,波形性稍微较大
  • 复购率低于回购率,平稳后在20%左右,波动小较小
  • 前三个月不困是回购还是复购,都呈现上升趋势,说明新用户需要一定时间来变成复购或者回购用户
  • 结合新老用户分析,新客户忠诚度远低于老客户忠诚度。

经验:

1、在敲代码时遇到诸多bug,原视频的代码不可照搬,原视频的代码从第四个cell开始开始报错,比如df['month'] = df['order_date'].dt.to_period('M')在这里卡了好久,原本的astype('datetime64[M]')会报错,为此还写了一个经验帖解决较简单的代码问题的思路——以报错“cannot cast DatetimeArray to dtype datetime64[M]”为例_dodo2333333的博客-CSDN博客

2、思路可以多变通

在新老,活跃,回流用户分析中

plt.plot(rate['return'],label='return')报错float() argument must be a string or a number, not 'Period'

尝试过以下三种方法都没有用

在前面加df['month'] =list(df['month'] )

在plt.plot(rate['return'], label='return')前面加rate['return'] = rate['return'].astype(str)

以及按搜出来的说在plot前面加pd.plotting.register_matplotlib_converters()

之后将这行代码改成rate['return'].plot(label='return')才解决了问题。平时可以注意积累同一需求的不同方法。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值